[1] MASMOUDI Abdelkarim, ABDELKAFI Achraf, KRICHEN Lotfi. Electric power generation based on variable speed wind turbine under load disturbance[J]. Energy, 2011, 36(8): 5016-5026.
[2] NIKNAM Taher, KAVOUSIFARD Abdollah, TABATABAEI Sajad, et al. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks[J]. Journal of Power Sources, 2011, 196 (20): 8881-8896.
[3] CHRISTOPHER Schaber, PATRICK Mazza, ROEL Hammerschlag. Utility-scale storage of renewable energy[J]. The Electricity Journal, 2004, 17 (6): 21-29.
[4] 贾佳坤, 王庆. 高能密度液流电池的研究进度[J]. 储能科学与技术, 2015, 4 (5): 467-475.
JIA Chuankun, WANG Qing. The development of high energy density redox flow batteries[J]. Energy Storage Science and Technology, 2015, 4 (5): 467-475.
[5] SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986, 133 (5): 1057-1058.
[6] KIM K J, KIM Y J, KIM J H, et al. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries[J]. Materials Chemistry and Physics, 2011, 131: 547-553.
[7] KIM K J, PARK M S, KIM Y J, et al. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries[J]. Journal of Materials Chemistry, 2015, 3: 16913-16933.
[8] ZHANG Wenguang, XIA Jingyu, LI Zhaohua, et al. Electrochemical activation of graphite felt electrode for /VO2+ redox couple application[J]. Electrochimica Acta, 2013, 89: 429-435.
[9] SUN B, SKYLLAS-KAZACOS M. Modification of graphite electrode materials for vanadium redox flow battery application-I. thermal treatment[J]. Electrochimica Acta, 1992, 37: 1253-1260.
[10] SUN B, SKYLLAS-KAZACOS M. Chemical modification of graphite electrode materials for vanadium redox flow battery application-Part II. acid treatments[J]. Electrochimica Acta, 1992, 37: 2459-2465.
[11] LI Wenyue, LIU Jianguo, YAN Chuanwei. The electrochemical catalytic activity of single-walled carbon nanotubes towards /VO2+ and V3+/V2+ redox pairs for an all vanadium redox flow battery[J]. Electrochimica Acta, 2012, 79: 102-108.
[12] JEONG S H, KIM S H, KWON Y C. Performance enhancement in vanadium redox flow battery using platinum-based electrocatalyst synthesized by polyol process[J]. Journal of Power Sources, 2013, 114: 439-447.
[13] TSENG T M, HUANG R H, HUANG C Y, et al. Carbon felt coated with titanium dioxide/carbon black composite as negative electrode for vanadium redox flow battery[J]. Journal of the Electrochemical Society, 2014, 161(6): A1132-A1138.
[14] HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339.
[15] HUANG Yi , LIANG Jiajie, CHEN Yongsheng. An overview of the applications of graphene-based materials in supercapacitors[J]. Small, 2012, 8(12): 1805-1834.
[16] JING Minghua, ZHANG Xiaoshun, FAN Xinzhuang, et al. CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery[J]. Electrochimica Acta, 2016, 215: 57-65.
[17] 贾铮, 戴长松, 陈玲. 电化学测量方法[M]. 北京: 化学工业出版社, 2006.
JIA Zheng, DAI Changsong, CHEN Ling. Methods of electrochemical measurement[M]. Beijing: Chemical Industry Press, 2006.
[18] WEI Guanjie, SU Wei, WEI Zengfu, et al. Effect of the graphitization degree for electrospun carbon nanofibers on their electrochemical activity towards /VO2+ redox couple[J]. Electrochimica Acta, 2016, 199: 147-153.
[19] JING Minghua, WEI Zengfu, SU Wei, et al. Improved electrochemical performance for vanadium flow battery by optimizing the concentration of the electrolyte[J]. Journal of Power Sources, 2016, 324: 215-223.
[20] WEI Guanjie, FAN Xinzhaung, LIU Jianguo, et al Investigation of the electrospun carbon web as the catalyst layer for vanadium redox flow battery[J]. Journal of Power Sources, 2014, 270: 634-645.
[21] AARON D, TANG Z J, PAPANDREW A B, et al. Polarization curve analysis of all-vanadium redox flow batteries[J]. Journal of Applied Electrochemistry, 2011, 41: 1175-1182. |