[1] 潘海鸿, 吕治强, 李君子, 等. 基于灰色扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2017, 32(21):1-8. PAN Haihong, LÜ Zhiqiang, LI Junzi, et al. Charge state estimation of lithium ion batteries based on grey extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2017, 32(21):1-8.
[2] 封进. BP神经网络预估锂离子电池SOC训练数据选择[J]. 电源技术, 2016, 40(2):283-286. FENG Jin. Selection of SOC training data for lithium ion batteries predicted by neural network[J]. Chinese Journal of Power Sources, 2016, 40(2):283-286.
[3] ANTÓN J C, NIETO P J, DE COS JUEZ F J, et al. Battery state-ofcharge estimator using the MARS technique[J]. IEEE Transactions on Power Electronics, 2013, 28(8):3798-3805.
[4] 杜涛, 李爱魁, 马军, 等. 动力电池SOC预估方法研究进展[J]. 电源技术, 2015, 39(4):844-848. DU Tao, LI Aikui, MA Jun, et al. Research progress of SOC prediction methods for power batteries[J]. Chinese Journal of Power Sources, 2015, 39(4):844-848.
[5] 王琪, 孙玉坤, 倪福银, 等. 一种混合动力电动汽车电池荷电状态预测的新方法[J]. 电工技术学报, 2016, 31(9):189-196. WANG Qi, SUN Yukun, NI Fuyin, et al. A new method for predicting battery charging state of hybrid electric vehicle[J]. Transactions of China Electrotechnical Society, 2016, 31(9):189-196.
[6] 杨杰, 王婷, 杜春雨, 等. 锂离子电池模型研究综述[J]. 储能科学与技术, 2019, 8(1):58-64. YANG Jie, WANG Ting, DU Chunyu, et al. Lithium ion battery model research synthesis[J]. Energy Storage Science and Technology, 2019, 8(1):58-64.
[7] 嵇雷, RYAD Chellali. 基于自适应卡尔曼滤波的电池荷电状态估算[J]. 电池, 2018, 48(4):240-243. JI Lei, RYAD Chellali. Battery charge state estimation vased on adaptive Kalman filter[J]. Battery Bimonthly, 2018, 48(4):240-243.
[8] 梁奇. 基于无迹卡尔曼滤波的锂电池SOC估算[D]. 绵阳:西南科技大学, 2018. LIAGN Qi. Estimation of lithium battery SOC based on unscented Kalman filter[D]. Mianyang:Southwest University of Science and Technology, 2018.
[9] 赵佳美. 基于二阶EKF的锂离子电池SOC估计的建模与仿真[D]. 西安:西安科技大学, 2018. ZHAO Jiamei. Modeling and simulation of SOC estimation for lithium-ion batteries based on second-order EKF[D]. Xi'an:Xi'an University of Science and Technology, 2018.
[10] 杨阳, 殷时蓉, 张栋省. 基于改进EKF的锂离子电池SOC估算[J]. 电池, 2018, 48(3):182-184. YANG Yang, YIN Shirong, ZHANG Dongsheng. Estimation of SOC of lithium-ion batteries based on improved EKF[J]. Battery Bimonthly, 2018, 48(3):182-184.
[11] 刘艳莉, 戴胜, 程泽, 等. 基于有限差分扩展卡尔曼滤波的锂离子电池SOC估计[J]. 电工技术学报, 2014, 29(1):221-228. LIU Yanli, DAI Sheng, CHENG Ze, et al. SOC Estimation of lithium ion batteries based on finite difference extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2014, 29(1):221-228.
[12] 李志鹏, 赵杨. 纯电动汽车电池管理系统及SOC精确估计[J]. 电源技术, 2016, 140(5):1090-1093. LI Zhipeng, ZHAO Yang. Battery management system of pure electric vehicle and accurate estimation of SOC[J]. Chinese Journal of Power Sources, 2016, 140(5):1090-1093.
[13] XIONG Rui, HE Hongwen, SUN Fengchun, et al. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1):108-117.
[14] 赵轩, 马建, 刘瑞, 等. 基于GGAP-RBF神经网络的多参数纯电动客车蓄电池荷电状态预测[J]. 中国公路学报, 2015, 28(4):116-126. ZHAO Xuan, MA Jian, LIU Rui, et al. Prediction of multi-parameter pure electric bus battery charging status based on GGAP-RBF neural network[J]. China Journal of Highway and Transport, 2015, 28(4):116-126.
[15] 谢长君, 费亚龙, 曾春年, 等. 基于无迹粒子滤波的车载锂离子电池状态估计[J]. 电工技术学报, 2018, 33(17):3958-3964. XIE Changjun, FEI Yalong, ZENG Chunnian, et al. State estimation of vehicle-borne lithium-ion batteries based on trackless particle filtering[J]. Transactions of China Electrotechnical Society, 2018, 33(17):3958-3964.
[16] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略[J]. 物理学报, 2018, 67(5):259-269. PANG Hui. Lithium ion battery parameter identification strategy based on extended single event model[J]. Acta Physica Sinica, 2018, 67(5):259-269.
[17] 吕杨蒙, 朱自伟, 刘宝泉. 一种在线估算蓄电池内阻的计算方法[J]. 储能科学与技术, 2019, 8(2):264-268. LÜ Yangmeng, ZHU Ziwei, LIU Baoquan. An online calculation method for estimating the internal resistance of batteries[J]. Energy Storage Science and Technology, 2019, 8(2):264-268.
[18] 马龙, 文华. 锂离子电池温度变化过程仿真与验证[J]. 储能科学与技术, 2018, 7(4):712-717. MA Long, WEN Hua. Lithium ion battery temperature change simulation and verification[J]. Energy Storage Science and Technology, 2018, 7(4):712-717.
[19] 张廷, 胡社教. 基于改进Thenenin模型锂电池SOC估算方法[J]. 电源技术, 2015, 39(11):2400-2403. ZHANG Yan, HU Shejiao. SOC estimation method for lithium battery based on improved Thenenin model[J]. Chinese Journal of Power Sources, 2015, 39(11):2400-2403. |