储能科学与技术 ›› 2020, Vol. 9 ›› Issue (1): 257-265.doi: 10.19799/j.cnki.2095-4239.2019.0207

• 储能测试与评价 • 上一篇    下一篇

交互多模型无迹卡尔曼滤波算法预测锂电池SOC

陈德海(), 王超(), 朱正坤, 邹争明   

  1. 江西理工大学电气工程与自动化学院,江西 赣州 341000
  • 收稿日期:2019-09-19 修回日期:2019-10-17 出版日期:2020-01-05 发布日期:2019-11-05
  • 通讯作者: 陈德海 E-mail:158865212@qq.com;1025359112@qq.com
  • 作者简介:王超(1996—),男,硕士研究生,主要研究方向为新能源汽车电池管理系统,E-mail:1025359112@qq.com
  • 基金资助:
    空间多维多尺度维纳精密制造机构拓扑构型非线性优化研究(20151BAB206034)

Lithium battery state-of-charge estimation based on interactive multi-model unscented kalman filter Algorithm

CHEN Dehai(), WANG Chao(), ZHU Zhengkun, ZOU Zhengming   

  1. Jiangxi University of Science and Technology School of Electrical Engineering and Automation, Ganzhou, 341000 Jiangxi,China
  • Received:2019-09-19 Revised:2019-10-17 Online:2020-01-05 Published:2019-11-05
  • Contact: Dehai CHEN E-mail:158865212@qq.com;1025359112@qq.com

摘要:

在动力电池荷电状态(state of charge,SOC)预测方法中,针对安时积分法存在累计误差、拓展卡尔曼滤波算法估计结果发散等问题,本文提出了基于交互多模型无迹卡尔曼滤波(IMM-UKF)算法的SOC估计策略。首先建立二阶RC电池等效模型,利用含有遗忘因子的递推最小二乘法在线辨识电池等效模型参数,考虑电池在不同倍率状态下放电引起电池实际容量的变化和传感器的噪声,通过建立大电流、中电流、小电流3个不同参数的电池模型,然后研究三个模型之间马尔科夫链,根据先验信息确定各模型之间的转移概率和模型概率,最后搭建Matlab仿真模型,其实验结果表明IMM-UKF估计平均误差在1%以内,算法的自适应性增强,预测精度提高,较目前主流的预测方法有更好地预测效果。

关键词: SOC, 递推最小二乘法, IMM-UKF, 马尔科夫链, 自适应性

Abstract:

In the prediction method of the power lithium battery state of charge (SOC), there are problems such as the cumulative error of the ampere-time integration method and the divergence of the estimation result of the extended Kalman filter algorithm. This paper proposes a soc estimation strategy based on the interactive multi-model unscented Kalman filter (IMM-UKF) algorithm. Firstly, the second-order RC battery equivalent model is established,The recursive least squares method with forgetting factor is used to identify the battery equivalent model parameters online, and consider the battery's actual capacity change and sensor noise caused by the discharge of the battery under different magnification conditions. Three different parameters of the battery model of current, medium current and small current, then study the Markov chain between the three models, determine the transition probability and model probability between each model based on the prior information, and finally build the matlab simulation model,The experimental results show that the average error of IMM-UKF is less than 1%, the adaptability of the algorithm is enhanced, and the prediction accuracy is improved, which has better prediction effect than the current mainstream prediction methods.

Key words: SOC, push the least squares method, IMM-UKF, Markov chain, adaptive

中图分类号: