1 |
ZHANG Q , LI F , HUANG J Q , et al . Lithium-sulfur batteries: Co-existence of challenges and opportunities[J]. Advanced Functional Materials, 2018, 28: doi: 10.1002/adfm.201804589.
|
2 |
ZHANG X Q , ZHAO C Z , HUANG J Q , et al . Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4: 831-847.
|
3 |
YANG Y , ZHENG G , CUI Y . Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42: 3018-3032.
|
4 |
LI M , LIU X J , LI Q , et al . P4S10 modified lithium anode for enhanced performance of lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2020, 41: 27-33.
|
5 |
CHENG X B , ZHANG R , ZHAO C Z , et al . Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117: 10403-10473.
|
6 |
PENG H J , HUANG J Q , ZHANG Q . A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries[J]. Chemical Society Reviews, 2017, 46: 5237-5288.
|
7 |
CHENG X B , HUANG J Q , ZHANG Q . Review-Li metal anode in working lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2018, 165: A6058-A6072.
|
8 |
ZHAO H J , DENG N P , YAN J , et al . A review on anode for lithium-sulfur batteries: Progress and prospects[J]. Chemical Engineering Journal, 2018, 347: 343-365.
|
9 |
LIU H , CHENG X B , JIN Z , et al . Recent advances in understanding dendrite growth on alkali metal anodes[J]. Energy Chem, A 2019, 1: doi: 10.1016/j.enchem.2019.100003.
|
10 |
ZHAO Y , YE Y , WU F , et al . Anode interface engineering and architecture design for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2019, 31: doi: 10.1002/adma.201806532.
|
11 |
YAN M , WANG W P , YIN Y X , et al . Interfacial design for lithium-sulfur batteries: From liquid to solid[J]. Energy Chem., 2019, 1: doi: 10.1016/j.enchem.2019.100002.
|
12 |
WANG S , ZHANG Y B , ZHANG X , et al . High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10: 42279-42285.
|
13 |
CHEN S J , XIE D J , LIU G Z , et al . Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74.
|
14 |
CHENG X B , ZHAO C Z , YAO Y X , et al . Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem., 2019, 5: 74-96.
|
15 |
SHEN X , CHENG X B , SHI P , et al . Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries[J]. Journal of Energy Chemistry, 2019, 37: 29-34.
|
16 |
ZHAO C Z , ZHAO B C , YAN C , et al . Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: A review[J]. Energy Storage Materials, 2020, 24: 75-84.
|
17 |
KATO Y , HORI S , SAITO T , et al . High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.30.
|
18 |
ZHAO E Y , WANG J Y , LI F , et al . Exploring reaction dynamics in lithium-sulfur batteries by time-resolved operando sulfur K- edge X- ray absorption spectroscopy[J]. Chemical Communications, 2019, 55: 4993-4996.
|
19 |
WENZEL S , WEBER D A , LEICHTWEISS T , et al . Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics, 2016, 286: 24-33.
|
20 |
ZHANG W B , LEICHTWEISS T , CULVER S P , et al . The detrimental effects of carbon additives in Li10GeP2S12-based solid-statebatteries[J]. ACS Applied Materials & Interfaces, 2017, 9: 35888-35896.
|
21 |
TAN D H S , WU E A , NGUYEN H , et al . Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte[J]. ACS Energy Letters, 2019, 4: 2418-2427.
|
22 |
LIN H , YANG D D , LOU N , et al . Functionalized titanium nitride-based MXenes as promising host materials for lithium-sulfur batteries: A first principles study[J]. Ceramics International, 2019, 45: 1588-1594.
|
23 |
ZHAO C Z , DUAN H , HUANG J Q , et al . Designing solid-state interfaces on lithium-metal anodes: A review[J]. Science China Chemistry, 2019, 62: 1286-1299.
|
24 |
EOM M, SON S, PARK C , et al . High performance all-solid-state lithium-sulfur battery using a Li2S-VGCF nanocomposite[J]. Electrochimica Acta, 2017, 230: 279-284.
|
25 |
GRACIA I , HBEN YOUCEF , JUDEZ X , et al . S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries[J]. Journal of Power Sources, 2018, 390: 148-152.
|
26 |
ZHANG Q , HUANG N , HUANG Z , et al . CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life[J]. Journal of Energy Chemistry, 2020, 40: 151-155.
|
27 |
CHOI S , YOON I , NICHOLS W T , et al . Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium-sulfur battery using Li2S-P2S5 solid electrolyte[J]. Ceramics International, 2018, 44: 7450-7453.
|
28 |
HAN Q G , LI X L , SHI X X , et al . Outstanding cycle stability and rate capabilities of the all-solid-state Li-S battery with a Li7P3S11 glass-ceramic electrolyte and a core-shell S@BP2000 nanocomposite[J]. Journal of Materials Chemistry A, 2019, 7: 3895-3902.
|
29 |
HOU L P , YUAN H , ZHAO C Z , et al . Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2019, doi: 10.1016/j.ensm.2019.1009.1037 .
doi: 10.1016/j.ensm.2019.1009.1037
|
30 |
KONG L , JIN Q , ZHANG X T , et al . Towards full demonstration of high areal loading sulfur cathode in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2019, 39: 17-22.
|
31 |
LIU L , XU J , WANG S , et al . Practical evaluation of energy densities for sulfide solid-state batteries[J]. eTransportation, 2019, 1:doi: 10.1016/j.etran.2019.100010.
|
32 |
MCCLOSKEY B D . Attainable gravimetric and volumetric energy density of Li-S and Li ion battery cells with solid separator-protected Li metal anodes[J]. Journal of Physical Chemistry Letters, 2015, 6: 4581-4588.
|
33 |
HASSOUN J , VERRELLI R , REALE P , et al . A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte[J]. Journal of Power Sources, 2013, 229: 117-122.
|
34 |
SWAMY T , CHEN X W , CHIANG Y M . Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes[J]. Chemistry of Materials, 2019, 31: 707-713.
|
35 |
SANG L Z , BASSETT K L , CASTRO F C , et al . Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface for all-solid-state Li batteries[J]. Chemistry of Materials, 2018, 30: 8747-8756.
|
36 |
LIANG J N , LUO J , SUN Q , et al . Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2019, 21: 308-334.
|