储能科学与技术 ›› 2020, Vol. 9 ›› Issue (3): 679-683.doi: 10.19799/j.cnki.2095-4239.2020.0042

• 未来科学城储能技术专刊 • 上一篇    下一篇

燃料电池车载储氢瓶结构对加氢温升的影响

许壮(), 杨康, 董文平, 何广利   

  1. 北京低碳清洁能源研究院,北京 102211
  • 收稿日期:2020-01-19 修回日期:2020-02-23 出版日期:2020-05-05 发布日期:2020-05-11
  • 作者简介:许壮(1986—),男,博士,主要从事氢能技术开发,E-mail:zhuang.xu.a@chnenergy.com.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB1503105)

Effect of tank structure on hydrogen refueling temperature rise for fuel cell vehicles

XU Zhuang(), YANG Kang, DONG Wenping, HE Guangli   

  1. National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
  • Received:2020-01-19 Revised:2020-02-23 Online:2020-05-05 Published:2020-05-11

摘要:

通过零维氢气物性和一维壁面散热相结合的方法,建立了燃料电池车载储氢瓶加注仿真模型,验证了加氢温升仿真的准确性。运用加注仿真模型,研究了储氢瓶壁面结构对加氢温升的影响规律。仿真结果表明,对于铝合金为内衬材料的III型储氢瓶,加氢过程中,瓶内氢气产生的热量绝大部分被壁面材料导热吸收,仅有约2%的热量通过储氢瓶壁面散出至环境。由于内衬层铝合金材料比缠绕层碳纤维复合树脂材料具有更高的导热系数,内衬层的径向温度梯度几乎不存在,相比之下,缠绕层的径向温度梯度较大,导致内衬层导热对氢气散热的贡献更大。内衬层越薄,氢气总散热量越小,加氢温升越显著;当内衬层厚度由7 mm减薄至3 mm时,加氢温升增加约10 ℃。与内衬层相比,缠绕层厚度对加氢温升影响较小;当缠绕层厚度由12 mm减薄至8 mm时,加氢温升增加约1.8 ℃。因此,III型瓶加氢时,可以根据其壁面结构,尤其是内衬层厚度,定制化加氢速率,从而实现不超温条件下的快速加氢。

关键词: 储氢瓶, 内衬层, 缠绕层, 加氢, 温升

Abstract:

This study simulates a hydrogen storage tank assuming lumped hydrogen gas and one-dimensional heat transfer through the tank wall. The model was verified on reported data and then applied in a refueling simulation that investigated the effect of tank structure on the temperature rise of the enclosed hydrogen. During refueling of a Type III tank, most of the simulated hydrogen heat was passed into the tank wall, only 2% of the heat was dissipated from the tank into the environment. Owing to its higher thermal conductivity and significantly lower temperature gradient in the radial direction, the aluminum liner layer exchanged more hydrogen heat than the wrap layer. Reducing the liner layer thickness acceleratted the temperature rise. The hydrogen refueling temperature rise was 10 ℃ higher in the tank with a 3-mm-thick liner layer than in the same tank with a 7 mm-thick liner layer. In contrast, the warp layer thickness had an insignificant effect on hydrogen heat exchange owing to its relatively lower heat conductivity than the liner layer. The simulated temperature rise increased by only 1.8 ℃ when the tank wrap layer thickness was reduced from 12 to 8 mm. Therefore, when controlling the hydrogen refueling of a Type III tank, the effect of tank structure on the temperature rise cannot be ignored. To realize fast and safe refueling, the hydrogen fueling rate can be optimized considering the tank wall parameters, especially the thickness of the aluminum liner layer.

Key words: hydrogen storage tank, liner layer, wrap layer, hydrogen refueling, temperature rise

中图分类号: