1 |
LIU H, HE Q, SAEED S B. Thermodynamic analysis of a compressed air energy storage system through advanced exergetic analysis[J]. Journal of Renewable and Sustainable Energy, 2016, 8(3): 1002-1016.
|
2 |
徐桂芝, 宋洁, 王乐, 等. 深冷液化空气储能技术及其在电网中的应用分析[J]. 全球能源互联网, 2018, 1(3): 330-337.
|
|
XU G Z, SONG J, WANG L, et al. Cryogenic liquefied air energy storage technology and application analysis in power grid[J]. Journal of Global Energy Interconnection, 2018, 1(3): 330-337.
|
3 |
PENG H, ZHANG D, LING X, et al. N-alkanes phase change materials and their microencapsulation for thermal energy storage: A critical review[J]. Energy & Fuels, 2018, 32(7): 7262-7293.
|
4 |
贾祥. 先进绝热压缩空气储能电站热力系统动态特性研究[D]. 北京: 华北电力大学, 2017.
|
|
JIA X. Study on dynamic characteristics of advanced adiabatic compressed air storage power station thermal system[D]. Beijing: North China Electric Power University, 2017.
|
5 |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268.
|
6 |
KRAWCZYK P, SZABŁOWSKI L, KARELLAS S, et al. Comparative thermodynamic analysis of compressed air and liquid air energy storage systems[J]. Energy, 2018, 142: 46-54.
|
7 |
GUO H, XU Y J, ZHANG X J, et al. Transmission characteristics of exergy for novel compressed air energy storage systems-from compression and expansion sections to the whole system[J]. Energy, 2020, 193: 1-16.
|
8 |
GEORGIOU S, SHAH N, MARKIDES C N. A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems[J]. Applied Energy, 2018, 226: 1119-1133.
|
9 |
Highview Power. With a growing portfolio of projects across four continents, learn about our developed and developing projects[EB/OL]. https://highviewpower.com/plants.
|
10 |
HE T B, CHONG Z R, ZHENG J J, et al. LNG cold energy utilization: Prospects and challenges[J]. Energy, 2019, 170: 557-568.
|
11 |
KANTHARAJ B, GARVEY S, PIMM A. Compressed air energy storage with liquid air capacity extension[J]. Applied Energy, 2015, 157: 152-164.
|
12 |
安保林, 陈嘉祥, 王俊杰, 等. 液态空气储能系统液化率影响因素研究[J]. 工程热物理学报, 2019, 40(11): 2478-2482.
|
|
AN B L, CHEN J X, WANG J J, et al. Study on the influencing factors on liquid air energy storage system liquefaction rate[J]. Journal of Engineering Thermophysics, 2019, 40(11): 2478-2482.
|
13 |
刘青山, 葛俊, 黄葆华, 等. 储能压力对液态压缩空气储能系统特性的影响[J]. 西安交通大学学报, 2019, 53(11): 1-9.
|
|
LIU Q S, GE J, HUANG B H, et al. Influence of energy storage pressure on the characteristics of liquid air energy storage system[J]. Journal of Xi'an Jiaotong University, 2019, 53(11): 1-9.
|
14 |
QI M, PARK J, KIM J, et al. Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation[J]. Applied Energy, 2020, 269: 1-18.
|
15 |
MURRANT D, RADCLIFFE J. Analysis of when and where the integration of LAES with refrigerated warehouses could provide the greatest value to Europe[J]. Energy Procedia, 2018, 151: 144-149.
|
16 |
VECCHI A, LI Y L, MANCARELLA P, et al. Integrated technoeconomic assessment of liquid air energy storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance[J]. Applied Energy, 2020, 262: 1-18.
|
17 |
SHE X H, PENG X D, ZHANG T T, et al. Preliminary study of liquid air energy storage integrated with LNG cold recovery[J]. Energy Procedia, 2019, 158: 4903-4908.
|
18 |
SHE X H, ZHANG T T, CONG L, et al. Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement[J]. Applied Energy, 2019, 251: 1-11.
|
19 |
何青, 王立健, 刘文毅. 深冷液化空气储能系统的热力学建模及㶲分析[J]. 华中科技大学学报(自然科学版), 2018, 46(10): 127-132.
|
|
HE Q, WANG L J, LIU W Y. Thermodynamic model and exergy analysis of cryogenic liquefied air energy storage system[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(10): 127-132.
|
20 |
ALYAMI H, WILLIAMS R. Study and evaluation of liquid air energy storage technology for a clean and secure energy future[J]. American Journal of Engineering Research, 2015, 4(8): 41-54.
|
21 |
HE Q, WANG L J, ZHOU Q, et al. Thermodynamic analysis and optimization of liquefied air energy storage system[J]. Energy, 2019, 173: 162-173.
|
22 |
何青, 王立健, 郝银萍, 等. 深冷液化空气储能系统的优化与方案设计[J]. 中国电机工程学报, 2019, 39(15): 4478-4487.
|
|
HE Q, WANG L J, HAO Y P, et al. Optimization and design of the liquefied air energy storage system[J]. Proceedings of the CSEE, 2019, 39(15): 4478-4487.
|