储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1544-1555.doi: 10.19799/j.cnki.2095-4239.2021.0341

• 物理储能十年专刊·压缩空气 • 上一篇    下一篇

跨声速轴流压缩机动静叶弯参数耦合关系

张丹1,2(), 左志涛1,2,3,4, 周鑫1, 郭文宾1,2, 陈海生1,2(), 王星3()   

  1. 1.中国科学院工程热物理研究所,北京 100190
    2.中国科学院大学,北京 100049
    3.毕节高新技术产业开发区国家能源大规模物理储能技术研发中心,贵州 毕节 551712
    4.中科南京未来;能源系统研究院,江苏 南京 211135
  • 收稿日期:2021-07-13 修回日期:2021-07-24 出版日期:2021-09-05 发布日期:2021-09-08
  • 作者简介:张丹(1997—),女,硕士研究生,主要研究方向为叶轮机械气动热力学,E-mail:zhandgan@iet.cn|陈海生,研究员,主要研究方向为先进压缩空气储能、叶轮机械内部气动特性的试验与数值研究,E-mail:chen_hs@mail.etp.ac.cn|王星,副研究员,主要研究方向为叶轮机械内流分析与优化设计,E-mail:wangxing@ iet.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB0903602);中国科学院国际合作局国际伙伴计划项目(182211KYSB20170029);贵州省科技计划项目(黔科合基础[2019]1285号)

Coupling relationship of compound lean parameters of transonic axial compressor

Dan ZHANG1,2(), Zhitao ZUO1,2,3,4, Xin ZHOU1, Wenbin GUO1,2, Haisheng CHEN1,2(), Xing WANG3()   

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.National Energy Large Scale Physical Energy Storage Technologies R&D Center of Bijie High-tech Industrial Development Zone, Bijie 551712, Guizhou, China
    4.Nanjing Institute of Future Energy System, Nanjing 211135, Jiangsu, China
  • Received:2021-07-13 Revised:2021-07-24 Online:2021-09-05 Published:2021-09-08

摘要:

发展压缩空气储能技术是解决可再生能源大规模接入电网的有效途径,也是实现“碳达峰,碳中和”目标的重要技术手段之一。轴流压缩机是压缩空气储能(CAES)系统的重要部件之一,需要有宽工况、大流量、高压比等特点。采用数值模拟方法,以NASA Stage35为原型,通过正交试验法研究不同动静叶弯高、弯角之间的耦合关系,并对其进行优化。选取L49(74)正交表,以失速裕度、峰值效率、压比为优化目标,选取动静叶的弯高、弯角4个试验参数,进行4因素7水平的正交设计。优化设计后失速裕度提升了60.56%,效率和压比降低幅度在可接受范围内。通过极差分析发现弯叶片可以普遍提高失速裕度,但是峰值效率和压比普遍降低,动叶弯角对压缩机的气动性能影响最大。叶根附近,采用弯叶片使吸力面角区分离更加严重;在叶展中部,采用弯叶片可以弱化激波强度,减少低能流体的堆积,削弱附面层与激波的相互作用;在叶尖处,采用弯叶片可以延迟叶尖泄漏流与主流的交界面到达叶尖前缘,扩大失速裕度。

关键词: 轴流式压缩机, 弯叶片, 失速裕度, 气动性能

Abstract:

The development of compressed-air energy storage (CAES) technology is an effective approach to solve the large-scale integration of renewable energy and an important technical means to implement the goal of “carbon peak, carbon neutral” Axial compressors are one of the important components of a CAES system, which requires to have wide working conditions, large flow, and large pressure ratio Considering NASA Stage35 as a prototype, the coupling relationship between the compound-lean height and angle of the rotor and stator blades is examined using numerical simulations and orthogonal tests, and the system is optimized. After optimization, the stall margin increases by 60.56%, and the reduction of efficiency and pressure ratio is acceptable. Through the range analysis, the blade of the compound lean can generally improve the stall margin; however, the peak efficiency and pressure ratio are generally reduced, and the compound lean angle of the rotor blade has considerable impact on the aerodynamic performance of the compressor. The corner separation of the suction surface is more severe close to the root of the blade. In the region of the middle blade, the intensity of the shock wave is weakened, and the accumulation of low-energy fluid is reduced. At the blade tip, the development of the tip leakage flow is slowed down, and the stall margin is enlarged.

Key words: axial compressor, compound lean blades, stall margin, aerodynamic performance

中图分类号: