1 |
国家能源局. 2020年全社会用电量同比增长3.1% [EB/OL]. [2021-01-20]. http://www.nea.gov.cn/2021-01/20/c_139682386.htm.
|
|
National Energy Administration. The electricity consumption of the whole society in 2020 increased by 3.1% year-on-year[EB/OL]. [2021-01-20]. http://www.nea.gov.cn/2021-01/20/c_139682386.htm.
|
2 |
邢作霞, 赵海川, 马士平, 等. 电制热固体储热装置关键参数设计研究和经济性评估[J]. 储能科学与技术, 2019, 8(6): 1211-1216.
|
|
XING Z X, ZHAO H C, MA S P, et al. Study on key parameters design and economic evaluation of the electric heating and solid sensible heat thermal storage device[J]. Energy Storage Science and Technology, 2019, 8(6): 1211-1216.
|
3 |
中华人民共和国国家发展与改革委员会. 关于推进电能替代的指导意见[EB/OL]. [2016-05-24]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201605/t20160524_963071.html.
|
|
National Development and Reform Commission. Guiding opinions on promoting electricity substitution[EB/OL]. [2016-05-24]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201605/t20160524_963071.html.
|
4 |
SUN Y, PANCHABIKESAN K, JOYBARI M M, et al. Enhancement in peak shifting and shaving potential of electrically heated floor residential buildings using heat extraction system[J]. Journal of Energy Storage, 2018, 18: 435-446.
|
5 |
邓雅军, 卞瑞豪, 王文昭, 等. 太阳能热发电的多级蓄热技术研究进展[J]. 科学技术与工程, 2021, 21(13): 5179-5187.
|
|
DENG Y J, BIAN R H, WANG W Z, et al. Review on multi-stage thermal storage systems for solar power generation[J]. Science Technology and Engineering, 2021, 21(13): 5179-5187.
|
6 |
王波, 马睿, 薛国程, 等. 工业有机废气热氧化技术研究进展[J]. 化工进展, 2017, 36(11): 4232-4242.
|
|
WANG B, MA R, XUE G C, et al. Research progress on thermal oxidation technology for industrial organic waste gas[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4232-4242.
|
7 |
曹建军, 王俊, 张利勇, 等. 蓄热技术对可再生能源分布式能源系统的效益分析[J]. 储能科学与技术, 2021, 10(1): 385-392.
|
|
CAO J J, WANG J, ZHANG L Y, et al. Benefit analysis of heat storage technology applied to distributed energy system with renewable energy[J]. Energy Storage Science and Technology, 2021, 10(1): 385-392.
|
8 |
ZHENG H P, WANG C H, LIU Q M, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157: 372-381.
|
9 |
万倩, 何露茜, 何正斌, 等. 泡沫铁/石蜡复合相变储能材料放热过程及其热量传递规律[J]. 储能科学与技术, 2020, 9(4): 1098-1104.
|
|
WAN Q, HE L X, HE Z B, et al. Exothermic process and heat transfer of iron foam/paraffin composite phase change energy storage materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1098-1104.
|
10 |
徐众, 侯静, 万书权, 等. 金属泡沫/石蜡复合相变材料的制备及热性能研究[J]. 储能科学与技术, 2020, 9(1): 109-116.
|
|
XU Z, HOU J, WAN S Q, et al. Preparation and thermal properties of metal foam/paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2020, 9(1): 109-116.
|
11 |
邹得球, 马先锋, 刘小诗, 等. 石墨烯在相变材料中的研究进展[J]. 化工进展, 2017, 36(5): 1743-1754.
|
|
ZOU D Q, MA X F, LIU X S, et al. Research progress on graphene in phase change materials[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1743-1754.
|
12 |
VINAYAKA RAM V, SINGHAL R, PARAMESHWARAN R. Energy efficient pumpable cement concrete with nanomaterials embedded PCM for passive cooling application in buildings[J]. Materials Today: Proceedings, 2020, 28: 1054-1063.
|
13 |
刘丽辉, 莫雅菁, 孙小琴, 等. 纳米增强型复合相变材料的传热特性[J]. 储能科学与技术, 2020, 9(4): 1105-1112.
|
|
LIU L H, MO Y J, SUN X Q, et al. Thermal behavior of the nanoenhanced phase change materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112.
|
14 |
XIAO W, WANG X, ZHANG Y P. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room[J]. Applied Energy, 2009, 86(10): 2013-2018.
|
15 |
AHANGARI M, MAEREFAT M. An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions[J]. Sustainable Cities and Society, 2019, 44: 120-129.
|
16 |
STATHOPOULOS N, MANKIBI M, ISSOGLIO R, et al. Air-PCM heat exchanger for peak load management: Experimental and simulation[J]. Solar Energy, 2016, 132: 453-466.
|
17 |
DRISSI S, LING T C, MO K H. Thermal efficiency and durability performances of paraffinic phase change materials with enhanced thermal conductivity—A review[J]. Thermochimica Acta, 2019, 673: 198-210.
|
18 |
LU B H, ZHANG Y X, SUN D, et al. Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage[J]. Renewable Energy, 2021, 178: 669-678.
|
19 |
KIM H S, KIM J H, KIM W Y, et al. Volume control of expanded graphite based on inductively coupled plasma and enhanced thermal conductivity of epoxy composite by formation of the filler network[J]. Carbon, 2017, 119: 40-46.
|
20 |
中华人民共和国住房和城乡建设部. 公共建筑节能设计标准: GB50189—2019[S]. 北京: 中国建筑工业出版社, 2015.
|
21 |
刘丽辉, 莫雅菁, 孙小琴, 等. 板式相变储能单元的蓄热特性及其优化[J]. 储能科学与技术, 2020, 9(6): 1784-1789.
|
|
LIU L H, MO Y J, SUN X Q, et al. Thermal storage characteristics and optimization of plate-type phase change energy storage unit[J]. Energy Storage Science and Technology, 2020, 9(6): 1784-1789.
|