储能科学与技术 ›› 2022, Vol. 11 ›› Issue (2): 600-608.doi: 10.19799/j.cnki.2095-4239.2021.0421

• 储能系统与工程 • 上一篇    下一篇

用于风电功率平抑的飞轮储能阵列功率协调控制策略

陈玉龙(), 武鑫(), 滕伟, 柳亦兵   

  1. 华北电力大学先进飞轮储能技术研究中心,北京 102206
  • 收稿日期:2021-08-13 修回日期:2021-09-10 出版日期:2022-02-05 发布日期:2022-02-08
  • 通讯作者: 武鑫 E-mail:longyizhixin@163.com;wuxin@ncepu.edu.cn
  • 作者简介:陈玉龙(1996—),男,硕士研究生,主要研究方向为飞轮储能系统充放电控制,E-mail:longyizhixin@163.com;通讯
  • 基金资助:
    国家重点研发计划项目(2017YFC0805905)

Power coordinated control strategy of flywheel energy storage array for wind power smoothing

Yulong CHEN(), Xin WU(), Wei TENG, Yibing LIU   

  1. Advanced Flywheel Energy Storage Technology Research Center, North China Electric Power University, Beijing 102206, China
  • Received:2021-08-13 Revised:2021-09-10 Online:2022-02-05 Published:2022-02-08
  • Contact: Xin WU E-mail:longyizhixin@163.com;wuxin@ncepu.edu.cn

摘要:

风电输出功率存在随机性和波动性的问题,使得电网调频难度加大。采用飞轮储能匹配风电的形式可以减小其功率波动,提高并网能力。以交流母线并联的飞轮储能阵列为研究对象,首先针对现有功率分配策略中存在的问题,提出一种考虑功率分配上限和能使各单元荷电状态(SOC)趋于一致的功率协调控制策略。同时为保证功率控制精度和储能系统的响应速度,采用对储能阵列进行分层分组控制的方法。然后建立了飞轮储能单元功率跟随控制模型和飞轮储能阵列功率控制模型,并通过一组飞轮储能单元的充放电仿真验证了所提协调控制策略的可行性和优势。最后基于飞轮储能实时补偿风电功率中高频成分的方法来平滑风电输出功率的波动。采用2 MW的飞轮储能阵列匹配10 MW风电,其中2 MW飞轮储能阵列由8台250 kW/50 (kW·h)飞轮储能单元组成,10 MW风电由5台2 MW风电机组组成。飞轮储能阵列采用仿真模型,风电输出功率采用200 min的实测运行机组的数据。仿真结果验证了所提出的控制策略和分层分组控制方法的有效性,也表明了飞轮储能匹配风电可以显著降低风电功率的波动量,且能满足国家相关标准(GB/T 19963—2011)的要求。

关键词: 风电功率平抑, 飞轮储能阵列, 功率协调控制策略

Abstract:

Wind energy output often shows randomness and fluctuation, making it difficult to adjust the frequency of the power grid. In this study, wind energy is smoothed by flywheel energy storage to reduce its power fluctuation and improve its grid-connection ability. First, a power coordinated control method is proposed to ensure that the power value allocated to each unit does not exceed its rated power and that the state of charge (SOC) of each unit converges to the same value. Simultaneously, the layered and grouped control method for the energy storage array is adopted to ensure the accuracy of power regulation and the energy storage system's response speed. Then, we develop a power-following control model for the flywheel energy storage unit and a power-following control model for the flywheel energy storage array. The feasibility and superiority of the proposed coordinated control technique are verified through charge and discharge simulations of a group of flywheel energy storage units. Finally, a flywheel energy storage array is used to compensate for the high frequency components of wind energy in real time, thereby smoothing out wind energy output power fluctuations. The 2 MW flywheel energy storage array is used to supplement 10 MW wind energy. The 2 MW flywheel energy storage array is composed of eight 250 kW/50 kW·h flywheel energy storage units, whereas the 10 MW wind energy system is composed of five 2 MW wind turbines. Finally, the flywheel energy storage is used to compensate for the high frequency components of wind energy in real time, thereby smoothing out the fluctuation in wind energy output power. The 2 MW flywheel energy storage array is used to supplement the wind farm's 10 MW capacity. The 2 MW flywheel energy storage array is composed of eight 250 kW/50 (kW·h) flywheel energy storage units, whereas the 10 MW wind energy system is composed of five 2 MW wind turbines. The flywheel energy storage array is modeled using simulation software, and the simulation data for 200 min of wind generation is used. The simulations verify the feasibility of the proposed control strategy and hierarchical grouping control method, as well as the fact that flywheel energy storage matched to wind energy can significantly reduce the fluctuation of wind power and satisfy the requirements of the national standards (GB/T 19963—2011).

Key words: wind power smoothing, flywheel energy storage array, power coordinated control strategy

中图分类号: