1 |
张向倩. 锂电池检测的安全标准及安全防护研究[J]. 安全, 2020, 41(3): 49-53.
|
|
ZHANG X Q. Research on the safety standards and safety protection of lithium battery testing[J]. Safety & Security, 2020, 41(3): 49-53.
|
2 |
孙正军. 基于图像边缘提取的电池极片瑕疵检测研究[D]. 长沙: 中南大学, 2009.
|
|
SUN Z J. Research on defect detection of battery electrode based on image edge extraction[D]. Changsha: Central South University, 2009.
|
3 |
郑岩. 基于DSP的锂电池电极表面缺陷检测系统[D]. 秦皇岛: 燕山大学, 2014.
|
|
ZHENG Y. The surface defects of lithium electrode detection system based on DSP[D]. Qinhuangdao: Yanshan University, 2014.
|
4 |
陈功, 朱锡芳, 许清泉, 等. 最大熵和高斯模型在锂电池缺陷识别中的应用[J]. 电源技术, 2014, 38(6): 1063-1065.
|
|
CHEN G, ZHU X F, XU Q Q, et al. Application of maximum entropy threshold and Gaussian mixture model in defects recognition of lithium battery[J]. Chinese Journal of Power Sources, 2014, 38(6): 1063-1065.
|
5 |
胡玥红. 基于机器视觉的锂电池极片缺陷检测研究[D]. 哈尔滨:哈尔滨工业大学,2015.
|
|
HU Y H. Research on defect detection of lithium battery electrode sheet based on machine vision[D]. Harbin:Harbin Institute of Technology,2015.
|
6 |
张志国. 基于智能学习的电池片表面缺陷视觉检测算法研究[D]. 广州: 华南理工大学,2019.
|
|
ZHANG Z G. Research on visual detection algorithm for surface defects of cell based on intelligent learning[D]. Guangzhou: South China University of Technology,2019.
|
7 |
黄梦涛, 连一鑫. 基于改进Canny算子的锂电池极片表面缺陷检测[J]. 仪器仪表学报, 2021, 42(10): 199-209.
|
|
HUANG M T, LIAN Y X. Lithium battery electrode plate surface defect detection based on improved Canny operator[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 199-209.
|
8 |
唐凤雄. 我国锂电池产业发展需要新思路——访国务院发展研究中心资源与环境政策研究所吴平[J]. 中国高新技术企业, 2010(20): 17-19.
|
9 |
蓝兹炜, 张建茹, 李园园, 等. 基于锂离子电池正极材料的一元/二元复合正极材料研究进展[J]. 储能科学与技术, 2021, 10(1): 27-39.
|
|
LAN Z W, ZHANG J R, LI Y Y, et al. Research progress of mono/binary composite cathode materials based on lithium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2021, 10(1): 27-39.
|
10 |
刘洋洋, 王旭阳, 徐谢宇, 等. 锂金属负极用集流体改性研究及进展[J]. 储能科学与技术, 2021, 10(4): 1261-1272.
|
|
LIU Y Y, WANG X Y, XU X Y, et al. Research progresses on modified current collector for lithium metal anode[J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272.
|
11 |
刘丽, 赵凌君, 郭承玉, 等. 图像纹理分类方法研究进展和展望[J]. 自动化学报, 2018, 44(4): 584-607.
|
|
LIU L, ZHAO L J, GUO C Y, et al. Texture classification: State-of-the-art methods and prospects[J]. Acta Automatica Sinica, 2018, 44(4): 584-607.
|
12 |
HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-621.
|
13 |
ULABY F T, KOUYATE F, BRISCO B, et al. Textural infornation in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(2): 235-245.
|
14 |
胡志新, 王涛. 改进遗传算法优化BP神经网络的双目相机标定[J]. 电光与控制, 2022, 29(1): 75-79.
|
|
HU Z X, WANG T. Binocular camera calibration based on BP neural network optimized by improved genetic algorithm[J]. Electronics Optics & Control, 2022, 29(1): 75-79.
|
15 |
马创, 周代棋, 张业. 基于改进鲸鱼算法的BP神经网络水资源需求预测方法[J]. 计算机科学, 2020, 47(S2): 486-490.
|
|
MA C, ZHOU D Q, ZHANG Y. BP neural network water resource demand prediction method based on improved whale algorithm[J]. Computer Science, 2020, 47(S2): 486-490.
|
16 |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
|