[1] 杨荣华.产业融合背景下的新能源汽车技术发展趋势研究[J].时代汽车,2022(01):119-120.
YANG R H. Research on the Development Trend of New Energy Vehicle Technology under the Background of Industrial Convergence[J]. Auto Time,2022(01):119-120.
[2] FENG X N, REN D S, et al. Mitigating thermal runaway of lithiumion batteries[J].Joule,2020,4(4):743-770.
[3] 欧阳陈志,梁波,等.锂离子动力电池热安全性研究进展[J].电源技术,2014,38(02):382-385.
OUYANG C Z, LIANG P, et al. Progress of thermal safety characteristics of high power lithium-ion batteries[J]. Chinese Journal of Power Sources,2014,38(02):382-385.
[4] 葛瑞,等.汽车动力电池系统防爆阀的选型与理论计算[J].上海汽车,2021(03):4-6+13.
GE R. Selection and theoretical calculation of explosion-proof valve for automobile power battery system[J]. Shanghai Auto,2021(03):4-6+13.
[5] 蒋南希等.新能源汽车锂电池防爆盖结构设计[J].电源技术,2018,42(08):1129-1133.
JIANG N X. Structure design of explosion proof cap for new energy vehicle[J]. Chinese Journal of Power Sources, 2018,42(08):1129-1133.
[6] FINEGAN D P, SCHEEL M, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J].Nature communications, 2015, 6(1): 1-10.
[7] COMAN P T, RAYMAN S, et al. A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell[J]. Journal of Power Sources, 2016, 307: 56-62.
[8] FENG X N, REN D S, et al. Mitigating thermal runaway of lithiumion batteries[J]. Joule, 2020, 4(4): 743-770.
[9] 常修亮,郑莉莉,等.锂离子电池热失控仿真研究进展[J].储能科学与技术,2021,10(06):2191-2199.
CHANG X L, ZHENG L L, et al. Progress in thermal runaway simulation of lithium-ion batteries[J]. Energy Storage Science and Technology,2021,10(06):2191-2199.
[10] 付一民,周健,等. 基于某动力电池防水透气防爆阀的仿真研究[J].汽车实用技术,2019(01):1-3.
FU Y M, ZHOU J, et al. Simulation Research on Waterproof and Ventilation Explosion-Proof Valve Based on a Power Battery[J].Automobile Applied Technology,2019(01):1-3.
[11] 杜光超,郑莉莉,等.圆柱形高镍三元锂离子电池高温热失控实验研究[J].储能科学与技术,2020,9(01):249-256.
DU G C, ZHNEG L L, et al. Experimental study on high temperature thermal runaway of cylindrical high nickel ternary lithium-ion batteries[J]. Energy Storage Science and Technology,2020,9(01):249-256.
[12] 刘红,沈少祥,蒋兰芳,等.基于Fluent的船用防爆阀降压特性研究[J].机电工程,2018,35(10):1053-1057.
LIU H, SHEN S X, JIANG L F, et al. Pressure-loss characteristics of marine explosion-proof valve based on fluent[J]. Journal of Mechanical & Electrical Engineering, 2018,35(10):1053-1057.
[13] 朱飞成,章军,王芳,等.基于壅塞流的恒负载气动系统的动态仿真[J].液压与气动,2014,09(030):123-127.
Zhu F C, Zhang J, Wang F. The Dynamic Simulation of Constant Loaded Pneumatic System Based on the Choked Flow[J].Chinese Hydraulic & Pneumatics, 2014,09(030):123-127.
[14] 王玮,田威,等.管道阻塞特征对壅塞流的影响[J].液压与气动,2014,06(014):55-62.
Wang W, Tian W. Effect of Pipe Blockage Characteristic on Chocked Flow[J]. Chinese Hydraulics & Pneumatics, 2014,06(014):55-62.
[15] 董军,杨俊,等.喷管内有摩擦流动的壅塞和临界参数[J].工程热物理学报,2017,38(12):2537-2541.
DONG J, YANG J. Chock and critical parameters of frictional flow in nozzle[J]. Journal of Engineering Thermophysics, 2017, 38(12):2537-2541.
|