• 储能科学与技术 •
收稿日期:
2023-04-27
修回日期:
2023-05-17
通讯作者:
李国兴
E-mail:202217019@mail.sdu.edu.cn;gxli@sdu.edu.cn
作者简介:
杲齐新(2000—),女,硕士研究生在读,主要研究方向为快速充电锂离子电池的设计,E-mail:202217019@mail.sdu.edu.cn;
基金资助:
Qixin GAO(), Jingteng ZHAO, Guoxing LI(
)
Received:
2023-04-27
Revised:
2023-05-17
Contact:
Guoxing LI
E-mail:202217019@mail.sdu.edu.cn;gxli@sdu.edu.cn
摘要:
具有高能量密度的可充电锂离子电池作为电动汽车的动力之源备受关注,然而,在高倍率充电时引发的镀锂、机械效应和放热等一系列问题会导致电池容量和功率的衰减。为了解决上述问题,需要合理地设计有利于锂离子快速传输的电极材料和电解质。本文综述了锂离子电池快充技术的发展现状,首先介绍了快充锂离子电池的理化基础,为实现优异的锂离子电池快充性能提供了理论指导;其次介绍了在高充电倍率下锂离子电池的性能衰减机制;最后着重从电极材料和电解质角度总结了实现高能量密度锂离子电池快充性能的研究策略。基于对最新进展的系统理解和分析,本综述可为设计具有优异倍率性能的快充锂离子电池提供指导。
中图分类号:
杲齐新, 赵景腾, 李国兴. 锂离子电池快速充电研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2023-0287.
Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress of fast-charging lithium-ion batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2023-0287.
图8
(a) 具有相应选定区域电子衍射图案的TEM图像和高放大倍率TEM图像,在1000次循环后,对P-NCA85和1-Nb NCA85正极的黄色方块包围的区域进行过滤傅里叶变换[73];(b) 在700、750和800 ℃下锂化10小时的NCA95和NCMo95正极颗粒的横截面SEM图[74];(c) LiCo0.98MO2 的倍率循环性能(M=Co0.02, Mg0.02, Ti0.02 和Mg0.01Ti0.01 )以及5 C下LiCoO2 和LiCo0.98Mg0.01Ti0.01O2 的循环性能[75];(d) LiNiO2 和掺杂了Mn的LiNiO2 晶体结构示意图[76]"
1 | 来鑫,陈权威,顾黄辉等.面向"双碳"战略目标的锂离子电池生命周期评价:框架、方法与进展[J]. 机械工程学报, 2022, 58(22): 3-18. |
Lai X, Chen Q W, Gu H H, et al. Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality: Framework, methods, and progress[J]. JOURNAL OF MECHANICAL ENGINEERING, 2022, 58(22): 3-18. | |
2 | 胡敏,王恒,陈琪.电动汽车锂离子动力电池发展现状及趋势[J]. 汽车实用技术, 2020, No. 312(09): 8-10. |
Hu M, Wang H, Chen Q. Development status and trend of lithium-ion power batteries for electric vehicles[J]. AUTOMOBILE APPLIED TECHNOLOGY, 2020, No. 312(09): 8-10. | |
3 | Bibra E M, Connelly E, Gorner M, et al. Global EV outlook 2021: Accelerating ambitions despite the pandemic[J]. 2021. |
4 | Zhang B, Niu N, Li H, et al. Could fast battery charging effectively mitigate range anxiety in electric vehicle usage? Evidence from large-scale data on travel and charging in Beijing[J]. Transportation Research Part D: Transport and Environment, 2021, 95: 102840. |
5 | Wang C Y, Liu T, Yang X G, et al. Fast charging of energy-dense lithium-ion batteries[J]. Nature, 2022, 611(7936): 485-490. |
6 | Weiss M, Ruess R, Kasnatscheew J, et al. Fast charging of lithium-ion batteries: a review of materials aspects[J]. Advanced Energy Materials, 2021, 11(33): 2101126. |
7 | Cai W, Yao Y X, Zhu G L, et al. A review on energy chemistry of fast-charging anodes[J]. Chemical society reviews, 2020, 49(12): 3806-3833. |
8 | Li S, Wang K, Zhang G, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Advanced Functional Materials, 2022, 32(23): 2200796. |
9 | Zhu G L, Zhao C Z, Huang J Q, et al. Fast charging lithium batteries: recent progress and future prospects[J]. Small, 2019, 15(15): 1805389. |
10 | Li G. Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(7): 2002891 |
11 | Zhao J, Song C, Li G. Fast-Charging strategies for lithium-ion batteries: Advances and Perspectives[J]. ChemPlusChem, 2022, 87(7): e202200155. |
12 | Rangom Y, Duignan T T, Zhao X S. Lithium-ion transport behavior in thin-film graphite electrodes with SEI layers formed at different current densities[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42662-42669. |
13 | Zhang Z, Zhao D, Xu Y, et al. A review on electrode materials of fast-charging lithium-ion batteries[J]. The Chemical Record, 2022, 22(10): e202200127. |
14 | Waldmann T, Hogg B I, Wohlfahrt-Mehrens M. Li plating as unwanted side reaction in commercial Li-ion cells-A review[J]. Journal of Power Sources, 2018, 384: 107-124. |
15 | Chandrasekaran R. Quantification of bottlenecks to fast charging of lithium-ion-insertion cells for electric vehicles[J]. Journal of Power Sources, 2014, 271: 622-632. |
16 | Zhang G, Wei X, Han G, et al. Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling[J]. Journal of Power Sources, 2021, 484: 229312. |
17 | Legrand N, Knosp B, Desprez P, et al. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling[J]. Journal of Power Sources, 2014, 245: 208-216. |
18 | Hein S, Danner T, Latz A. An electrochemical model of lithium plating and stripping in lithium ion batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 8519-8531. |
19 | Tomaszewska A, Chu Z, Feng X, et al. Lithium-ion battery fast charging: A review[J]. ETransportation, 2019, 1: 100011. |
20 | Xie W, Liu X, He R, et al. Challenges and opportunities toward fast-charging of lithium-ion batteries[J]. Journal of Energy Storage, 2020, 32: 101837. |
21 | Bandhauer T M, Garimella S, Fuller T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): R1. |
22 | Nazari A, Farhad S. Heat generation in lithium-ion batteries with different nominal capacities and chemistries[J]. Applied Thermal Engineering, 2017, 125: 1501-1517. |
23 | Smith K, Shi Y, Wood E, et al. Optimizing battery usage and management for long life[R]. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016. |
24 | Li Y, Feng X, Ren D, et al. Thermal runaway triggered by plated lithium on the anode after fast charging[J]. ACS applied materials & interfaces, 2019, 11(50): 46839-46850. |
25 | Feng X, Ren D, He X, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
26 | Li L, Zhang D, Deng J, et al. Carbon-based materials for fast charging lithium-ion batteries[J]. Carbon, 2021, 183: 721-734. |
27 | 王灿,马盼,祝国梁等.锂离子电池长寿命石墨电极研究现状与展望[J].储能科学与技术, 2021, 10(01): 59-67. |
Wang C, Ma P, Zhu G L, et al. LIB long life graphite electrode:State-of-art development and perspective[J]. Energy Storage Science and Technology, 2021, 10(01): 59-67. | |
28 | Yazami R, Touzain P. A reversible graphite-lithium negative electrode for electrochemical generators[J]. Journal of Power Sources, 1983, 9(3): 365-371. |
29 | Xue Y, Zhang Q, Wang W, et al. Opening two-dimensional materials for energy conversion and storage: A concept[J]. Advanced Energy Materials, 2017, 7(19): 1602684. |
30 | Kim T H, Jeon E K, Ko Y, et al. Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast[J]. Journal of Materials Chemistry A, 2014, 2(20): 7600-7605. |
31 | Chen K H, Namkoong M J, Goel V, et al. Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures[J]. Journal of Power Sources, 2020, 471: 228475. |
32 | Yao F, Gunes F, Ta H Q, et al. Diffusion mechanism of lithium ion through basal plane of layered graphene[J]. Journal of the American Chemical Society, 2012, 134(20): 8646-8654. |
33 | Cheng Q, Yuge R, Nakahara K, et al. KOH etched graphite for fast chargeable lithium-ion batteries[J]. Journal of Power Sources, 2015, 284: 258-263. |
34 | Xu C, Xu B, Gu Y, et al. Graphene-based electrodes for electrochemical energy storage[J]. Energy & Environmental Science, 2013, 6(5): 1388-1414. |
35 | Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS nano, 2011, 5(7): 5463-5471. |
36 | Agyeman D A, Song K, Lee G H, et al. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery[J]. Advanced energy materials, 2016, 6(20): 1600904. |
37 | Tu S, Lu Z, Zheng M, et al. Single-layer-particle electrode design for practical fast-charging lithium-ion batteries[J]. Advanced Materials, 2022, 34(39): 2202892. |
38 | Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19): 3256-3258. |
39 | An J, Zhang H, Qi L, et al. Self-expanding ion-transport channels on anodes for fast-charging lithium-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(7): e202113313. |
40 | Wang F, An J, Shen H, et al. Gradient graphdiyne induced copper and oxygen vacancies in Cu0.95V2O5 anodes for fast-charging lithium-ion batteries[J]. Angewandte Chemie, 2023, 135(7): e202216397. |
41 | An J, Wang F, Yang J Y, et al. An ion-pumping interphase on graphdiyne/graphite heterojunction for fast-charging lithium-ion batteries[J]. CCS Chemistry, 2023: 1-15. |
42 | Wang G, Yu M, Feng X. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews, 2021, 50(4): 2388-2443. |
43 | Hou H, Qiu X, Wei W, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced energy materials, 2017, 7(24): 1602898. |
44 | Chen K H, Goel V, Namkoong M J, et al. Enabling 6C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes[J]. Advanced energy materials, 2021, 11(5): 2003336. |
45 | Wang D, Zhou J, Li Z, et al. Uniformly expanded interlayer distance to enhance the rate performance of soft carbon for lithium-ion batteries[J]. Ionics, 2019, 25: 1531-1539. |
46 | Yuan T, Tan Z, Ma C, et al. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications[J]. Advanced energy materials, 2017, 7(12): 1601625. |
47 | Wang D, Shan Z, Tian J, et al. Understanding the formation of ultrathin mesoporous Li4Ti5O12 nanosheets and their application in high-rate, long-life lithium-ion anodes[J]. Nanoscale, 2019, 11(2): 520-531. |
48 | Kavan L, Grätzel M. Facile synthesis of nanocrystalline Li4Ti5O12 (Spinel) exhibiting fast Li insertion[J]. Electrochemical and Solid-State Letters, 2001, 5(2): A39. |
49 | Tang L, He Y B, Wang C, et al. High-density microporous Li4Ti5O12 microbars with superior rate performance for lithium-ion batteries[J]. Advanced Science, 2017, 4(5): 1600311. |
50 | Song Z, Li H, Liu W, et al. Ultrafast and stable Li-(de) intercalation in a large single crystal H-Nb2O5 anode via optimizing the homogeneity of electron and ion transport[J]. Advanced Materials, 2020, 32(22): 2001001. |
51 | Hao X, Bartlett B M. Li4Ti5O12 nanocrystals synthesized by carbon templating from solution precursors yield high performance thin film Li-ion battery electrodes[J]. Advanced Energy Materials, 2013, 3(6): 753-761. |
52 | Feckl J M, Fominykh K, Döblinger M, et al. Nanoscale porous framework of lithium titanate for ultrafast lithium insertion[J]. Angewandte Chemie, 2012, 124(30): 7577-7581. |
53 | Zhang X, Verhallen T W, Labohm F, et al. Direct observation of Li-ion transport in electrodes under nonequilibrium conditions using neutron depth profiling[J]. Advanced Energy Materials, 2015, 5(15): 1500498. |
54 | Pagani F, Stilp E, Pfenninger R, et al. Epitaxial thin films as a model system for Li-ion conductivity in Li4Ti5O12[J]. ACS applied materials & interfaces, 2018, 10(51): 44494-44500. |
55 | Jin X, Han Y, Zhang Z, et al. Mesoporous single-crystal lithium titanate enabling fast-charging Li-ion batteries[J]. Advanced Materials, 2022, 34(18): 2109356. |
56 | Li S, Wang K, Zhang G, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Advanced Functional Materials, 2022, 32(23): 2200796. |
57 | Philippe B, Dedryvère R, Allouche J, et al. Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy[J]. Chemistry of Materials, 2012, 24(6): 1107-1115. |
58 | Huang G, Han J, Lu Z, et al. Ultrastable silicon anode by three-dimensional nanoarchitecture design[J]. ACS nano, 2020, 14(4): 4374-4382. |
59 | Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS nano, 2012, 6(2): 1522-1531. |
60 | Zuo X, Yang Q, He Y, et al. High-temperature magnesiothermic reduction enables HF-free synthesis of porous silicon with enhanced performance as lithium-ion battery anode[J]. Molecules, 2022, 27(21): 7486. |
61 | Lin L, Ma Y, Xie Q, et al. Copper-nanoparticle-induced porous Si/Cu composite films as an anode for lithium ion batteries[J]. ACS nano, 2017, 11(7): 6893-6903. |
62 | Jo Y N, Kim Y, Kim J S, et al. Si-graphite composites as anode materials for lithium secondary batteries[J]. Journal of Power Sources, 2010, 195(18): 6031-6036. |
63 | Yoon Y S, Jee S H, Lee S H, et al. Nano Si-coated graphite composite anode synthesized by semi-mass production ball milling for lithium secondary batteries[J]. Surface and Coatings Technology, 2011, 206(2-3): 553-558. |
64 | Ko M, Chae S, Ma J, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy, 2016, 1(9): 1-8. |
65 | Dos Santos-Gómez L, Cuesta N, Cameán I, et al. A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries[J]. Electrochimica Acta, 2022, 426: 140790. |
66 | Lee B S, Oh S H, Choi Y J, et al. SiO-induced thermal instability and interplay between graphite and SiO in graphite/SiO composite anode[J]. Nature Communications, 2023, 14(1): 150-161. |
67 | 朱思颖,李辉阳,胡忠利等.锂离子电池氧化亚硅负极结构优化和界面改性研究进展[J]. 物理化学学报, 2022, 38(06): 39-66. |
Zhu S Y, Li H Y, Hu Z L, et al. Research progresses on structural optimization and interfacial modification of silicon monoxide anode for lithium-ion battery [J]. Acta Physico Chimica Sinica, 2022, 38(06): 39-66. | |
68 | Gao X, Li S, Xue J, et al. A Mechanistic and Quantitative Understanding of the Interactions between SiO and Graphite Particles[J]. Advanced Energy Materials, 2023, 13(2): 2202584. |
69 | 蓝兹炜,张建茹,李园园等.基于锂离子电池正极材料的一元/二元复合正极材料研究进展[J]. 储能科学与技术, 2021, 10(01): 27-39. |
Lan Z W, Zhang J R, Li Y Y, et al. Research progress of mono/binary composite cathode materials based on lithium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2021, 10(01): 27-39. | |
70 | Xue W, Gao R, Shi Z, et al. Stabilizing electrode-electrolyte interfaces to realize high-voltage Li||LiCoO2 batteries by a sulfonamide-based electrolyte[J]. Energy & Environmental Science, 2021, 14(11): 6030-6040. |
71 | Wang T Z, Wu X G, Xu S B, et al. Performance of plug-in hybrid electric vehicle under low temperature condition and economy analysis of battery pre-heating[J]. Journal of Power Sources, 2018,401(8): 245-254. |
72 | 安富强,赵洪量,程志等.纯电动车用锂离子电池发展现状与研究进展[J]. 工程科学学报, 2019, 41(01): 22-42. |
An F Q, Zhao H L, Chen Z, et al. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41(01): 22-42. | |
73 | Kim U H, Park J H, Aishova A, et al. Microstructure engineered Ni-rich layered cathode for electric vehicle batteries[J]. Advanced Energy Materials, 2021, 11(25): 2100884. |
74 | Park G T, Yoon D R, Kim U H, et al. Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries[J]. Energy & Environmental Science, 2021, 14(12): 6616-6626. |
75 | Zhang M, Tan M, Zhao H, et al. Enhanced high-voltage cycling stability and rate capability of magnesium and titanium co-doped lithium cobalt oxides for lithium-ion batteries[J]. Applied Surface Science, 2018, 458: 111-118. |
76 | Xu T, Du F, Wu L, et al. Boosting the electrochemical performance of LiNiO2 by extra low content of Mn-doping and its mechanism[J]. Electrochimica Acta, 2022, 417: 140345. |
77 | Wang C, Yuan X, Tan H, et al. Three-dimensional carbon-coated LiFePO4 cathode with improved Li-ion battery performance[J]. Coatings, 2021, 11(9): 1137. |
78 | Wang H, Liu L, Wang R, et al. Self-assembly of antisite defectless nano-LiFePO4@ C/reduced graphene oxide microspheres for high-performance lithium-ion batteries[J]. ChemSusChem, 2018, 11(13): 2255-2261. |
79 | Hu J, Ji Y, Zheng G, et al. Influence of electrolyte structural evolution on battery applications: cationic aggregation from dilute to high concentration[J]. Aggregate, 2022, 3(1): e153. |
80 | Yamada Y, Usui K, Chiang C H, et al. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes[J]. ACS applied materials & interfaces, 2014, 6(14): 10892-10899. |
81 | Ming J, Cao Z, Wahyudi W, et al. New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases[J]. ACS Energy Letters, 2018, 3(2): 335-340. |
82 | Yamada Y, Furukawa K, Sodeyama K, et al. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136(13): 5039-5046. |
83 | Cao X, Jia H, Xu W, et al. Localized high-concentration electrolytes for lithium batteries[J]. Journal of The Electrochemical Society, 2021, 168(1): 010522. |
84 | Jiang L L, Yan C, Yao Y X, et al. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries[J]. Angewandte Chemie International Edition, 2021, 60(7): 3402-3406. |
85 | Yue X, Zhang J, Dong Y, et al. Reversible Li plating on graphite anodes through electrolyte engineering for fast-charging batteries[J]. Angewandte Chemie International Edition, 2023: e202302285. |
86 | Son H B, Jeong M Y, Han J G, et al. Effect of reductive cyclic carbonate additives and linear carbonate co-solvents on fast chargeability of LiNi0.6Co0.2Mn0.2O2/graphite cells[J]. Journal of Power Sources, 2018, 400: 147-156. |
87 | Kim K, Park I, Ha S Y, et al. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries[J]. Electrochimica Acta, 2017, 225: 358-368. |
88 | Han J G, Jeong M Y, Kim K, et al. An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes[J]. Journal of power sources, 2020, 446: 227366. |
89 | Jiang G, Liu J, He J, et al. Hydrofluoric acid-removable additive optimizing electrode electrolyte interphases with Li+ conductive moieties for 4.5 V lithium metal batteries[J]. Advanced Functional Materials, 2214422. |
90 | Vishnugopi B S, Kazyak E, Lewis J A, et al. Challenges and opportunities for fast charging of solid-state lithium metal batteries[J]. ACS Energy Letters, 2021, 6(10): 3734-3749. |
91 | 张建军,董甜甜,杨金凤等.全固态聚合物锂电池的科研进展、挑战与展望[J]. 储能科学与技术, 2018, 7(05): 861-868. |
Zhang J J, Dong T T, Yang J F, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(05): 861-868. | |
92 | Ke X, Wang Y, Ren G, et al. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries[J]. Energy Storage Materials, 2020, 26: 313-324. |
93 | Mu S, Bi Z, Gao S, et al. Combination of organic and inorganic electrolytes for composite membranes toward applicable solid lithium batteries[J]. Chemical Research in Chinese Universities, 2021, 37: 246-253. |
94 | Famprikis T, Canepa P, Dawson J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature materials, 2019, 18(12): 1278-1291. |
95 | Arya A, Sharma A L. A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review[J]. Journal of Materials Science, 2020, 55(15): 6242-6304. |
96 | Ali S, Tan C, Waqas M, et al. Highly efficient PVDF-HFP/colloidal alumina composite separator for high-temperature lithium-ion batteries[J]. Advanced Materials Interfaces, 2018, 5(5): 1701147. |
97 | Xiao W, Li X, Guo H, et al. Preparation of core-shell structural single ionic conductor SiO2@ Li+ and its application in PVDF-HFP-based composite polymer electrolyte[J]. Electrochimica Acta, 2012, 85: 612-621. |
98 | Liu X, Ren Y, Zhang L, et al. Functional ionic liquid modified core-shell structured fibrous gel polymer electrolyte for safe and efficient fast charging lithium-ion batteries[J]. Frontiers in chemistry, 2019, 7: 421. |
99 | Lin Z, Guo X, Wang Z, et al. A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery[J]. Nano Energy, 2020, 73: 104786. |
100 | Yao Z, Zhu K, Li X, et al. Double-layered multifunctional composite electrolytes for high-voltage solid-state lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11958-11967. |
[1] | 宋缙华, 张兴浩, 丰震河, 程广玉, 顾洪汇, 顾海涛, 王可. 基于原位参比的氧化亚硅-石墨复合负极循环衰减机制[J]. 储能科学与技术, 2023, 12(4): 1059-1065. |
[2] | 胡力月, 姚行艳. 基于正交试验的锂离子电池热失控仿真[J]. 储能科学与技术, 2023, 12(4): 1268-1277. |
[3] | 刘峰, 陈海忠. 基于CEEMDAN和ISOA-ELM的锂电池荷电状态预测[J]. 储能科学与技术, 2023, 12(4): 1244-1256. |
[4] | 王朋凯, 张新燕, 张光昊. 基于ResNet-Bi-LSTM-Attention的锂离子电池剩余使用寿命预测[J]. 储能科学与技术, 2023, 12(4): 1215-1222. |
[5] | 翟智, 王福金, 邸一, 马珮羽, 赵志斌, 陈雪峰. 基于分层对齐迁移学习的锂离子电池容量估计[J]. 储能科学与技术, 2023, 12(4): 1223-1233. |
[6] | 管敏渊, 沈建良, 徐国华, 汤舜, 张炜鑫, 曹元成. 锂离子电池储能系统靶向消防装备设计与性能[J]. 储能科学与技术, 2023, 12(4): 1131-1138. |
[7] | 赵立禹, 孙桓五, 刘世闯, 闫志远. 重卡辅助动力电池加热系统能耗对比及优化[J]. 储能科学与技术, 2023, 12(4): 1139-1147. |
[8] | 杨妮, 苏岳锋, 王联, 李宁, 马亮, 朱晨. 聚焦离子束显微镜技术在锂离子电池领域的研究进展[J]. 储能科学与技术, 2023, 12(4): 1283-1294. |
[9] | 成雪莉, 张维福, 罗城城, 袁小亚. 一步水热法制备三维石墨烯/Fe3O4 复合材料及其储锂性能[J]. 储能科学与技术, 2023, 12(4): 1066-1074. |
[10] | 黄渭彬, 张彪, 范金成, 杨伟, 邹汉波, 陈胜洲. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. |
[11] | 李奇松, 陈荣, 李慧芳. 阻抗分析法在锂离子电池析锂阈值检测中的应用[J]. 储能科学与技术, 2023, 12(4): 1278-1282. |
[12] | 董渊昌, 庞晓琼, 贾建芳, 史元浩, 温杰, 李笑, 张鑫. 基于SVD-SAE-GPR的锂离子电池RUL预测[J]. 储能科学与技术, 2023, 12(4): 1257-1267. |
[13] | 申晓宇, 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.12.1—2023.1.31)[J]. 储能科学与技术, 2023, 12(3): 639-653. |
[14] | 常修亮, 李希超, 贾隆舟, 韦守李, 王敬豪, 戴作强, 郑莉莉. 过充循环老化电池产热特性[J]. 储能科学与技术, 2023, 12(3): 685-697. |
[15] | 刘树港, 蒙波, 李政隆, 杨亚雄, 陈建. Li x (Mg, Ni, Zn, Cu, Co) 1-x O高熵氧化物负极材料电化学储锂特性[J]. 储能科学与技术, 2023, 12(3): 743-753. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||