储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2362-2376.doi: 10.19799/j.cnki.2095-4239.2024.1151
袁帅1(), 崔煜杰2, 程东浩1,3(
), 台枫1, 吴金中2
收稿日期:
2024-12-04
修回日期:
2024-12-14
出版日期:
2025-06-28
发布日期:
2025-06-27
通讯作者:
程东浩
E-mail:yuanshuai@mail.castc.org.cn;chengdh@mail.castc.org.cn
作者简介:
袁帅(1991—),男,博士,助理研究员,主要研究方向为锂离子电池安全,E-mail:yuanshuai@mail.castc.org.cn;
基金资助:
Shuai YUAN1(), Yujie CUI2, Donghao CHENG1,3(
), Feng TAI1, Jinzhong WU2
Received:
2024-12-04
Revised:
2024-12-14
Online:
2025-06-28
Published:
2025-06-27
Contact:
Donghao CHENG
E-mail:yuanshuai@mail.castc.org.cn;chengdh@mail.castc.org.cn
摘要:
随着锂离子电池在电化学储能电站的广泛应用,电化学储能电站火灾和爆炸事故频繁发生。为深入研究这些事故的致灾因子,本文统计了2017年11月至2024年9月期间全球范围内发生的90起涉及锂离子电池的电化学储能电站火灾爆炸事故,并围绕电池类型、发生事故的国家、储能电站的运行状态、事故致因四个方面进行了统计分析;采用德尔菲法与风险矩阵法对设备风险、人为风险和环境风险涉及的15个风险因素进行了系统评估。研究结果表明:三元锂电池更容易引发火灾爆炸事故,由其引发的事故数量是磷酸铁锂电池的2.5倍;韩国发生的事故数量最多,共34起,占全球事故总数的37.8%;电化学储能电站在运行期间发生事故的最多,共计72起,占事故总数的80.0%;在事故致因中,人为因素导致的事故占比最大,为43.3%;冷却系统故障、电池过充、BMS/PCS/EMS异常、消防设施不足和环境高低温五个风险因素为高风险因素。针对这些高风险因素,本文提出了相应的防控措施,以提升电化学储能电站的整体安全性。
中图分类号:
袁帅, 崔煜杰, 程东浩, 台枫, 吴金中. 2017—2024年全球电化学储能电站火灾爆炸事故统计分析[J]. 储能科学与技术, 2025, 14(6): 2362-2376.
Shuai YUAN, Yujie CUI, Donghao CHENG, Feng TAI, Jinzhong WU. Statistical analysis of fire and explosion accidents in electrochemical energy-storage stations from 2017 to 2024 throughout the world[J]. Energy Storage Science and Technology, 2025, 14(6): 2362-2376.
表2
近年来电化学储能电站的典型安全事故案例"
序号 | 事故发生的时间 和地点 | 事故经过 | 事故原因 |
---|---|---|---|
1 | 2019年9月24日,韩国平昌 | 在运行期间,风力系统发电站储能系统发生火灾。 | 三元锂电池电芯处于过充状态,电压升高形成内短路。 |
2 | 2021年4月6日,韩国忠清南道 | 在运行期间,光伏电站储能系统起火,烧毁面积达22平方米,共造成约4.4亿韩元损失(约合人民币258万元)。 | 三元锂电池故障。 |
3 | 2022年1月12日,韩国蔚山南区 | 在运行期间,韩国蔚山南区SK能源公司发生火灾 | 三元锂电池过充导致热失控。 |
4 | 2021年4月16日,中国北京 | 在运行期间,北京国轩储能电站在施工调试过程中发生火灾,造成两名消防员牺牲,一名消防员受伤,电站一名员工死亡。 | 西电池室内磷酸铁锂电池发生内短路,造成南楼起火。南楼蓄电池室热失控发生火灾,热失控气体通过电缆沟进入北楼蓄电池室,后遇电火花引发北楼蓄电池室爆炸。 |
5 | 2022年2月18日,中国江西 | 在运行期间,储存阶段的电池舱剧烈燃烧。 | 雨水造成电池外部短路。 |
6 | 2022年4月10日,中国青岛 | 在运行期间,青岛市经济技术开发区多能互补综合能源示范站储能设备集装箱磷酸铁锂电池模组发生火灾,造成数台电池模组不同程度受损,过火面积超1平方米,未造成人员伤亡,直接财产损失近万元。 | 员工施工调试设备时误操作致使消防水泵动作,引发高压细水雾灭火系统喷水,造成电池组内磷酸铁锂电池遇水短路故障。 |
7 | 2024年5月26日,中国海南 | 在运行期间,海南某市一70 MW农光互补型光伏储能电站磷酸铁锂电池预制舱发生火灾,火灾造成1 组电池预制舱烧毁,未造成人员伤亡,未蔓延扩大,未发生次生灾害。 | 6号电池预制舱内2号电池簇底部配电箱因外部高压冲击短路起火。 |
8 | 2021年7月30日,澳大利亚维多利亚州 | 在运行期间,特斯拉储能系统发生爆燃,一个集装箱内的13吨锂离子电池完全燃烧。 | 冷却系统冷却液泄漏造成电池短路,从而导致电子元件起火,电池舱中起火蔓延至相邻的电池舱。 |
9 | 2019年4月19日,美国亚利桑那州 | 在运行期间,亚利桑那州公共服务公用事业公司储能设施爆炸。 | 三元锂电池缺陷。 |
10 | 2022年2月13日,美国加州 | 在运行期间,美国加州Moss Landing储能电站失火,大约10个电池架被熔化,现场无人员受伤。 | 三元锂电池严重过热。 |
11 | 2024年6月30日,德国图林根州 | 在运行期间,Suncycle工程测试中心运营的集装箱式电池储能系统发生了火灾,损失约70万欧元。 | 储能电站技术缺陷。 |
表7
储能电站风险因素的风险等级"
风险类别 | 风险因素 | 风险发生概率(Pf0)/% | 风险严重度(Cf0) | 风险等级(Rf0) |
---|---|---|---|---|
人为风险B1 | 操作不当C1 | 3.5 | 3.5 | 12.25 |
安装疏忽C2 | 1.2 | 2.5 | 3.3 | |
维护不足C3 | 1.8 | 2.5 | 4.5 | |
管理不当C4 | 2.5 | 3.5 | 8.75 | |
运营操作环境管理不善C5 | 3.25 | 3.0 | 9.75 | |
设备风险B2 | 电池制造瑕疵C6 | 2.75 | 4 | 11 |
电池老化C7 | 3.7 | 3.75 | 13.875 | |
电池材料缺陷C8 | 2.5 | 4.75 | 11.875 | |
冷却系统故障C9 | 4.5 | 4.5 | 20.25 | |
BMS/PCS/EMS异常C10 | 3.5 | 4.25 | 14.875 | |
电池过充C11 | 4.5 | 4.25 | 19.125 | |
消防设施不足C12 | 3.5 | 4.25 | 14.875 | |
环境风险B3 | 粉尘多C13 | 1.5 | 2.75 | 4.125 |
暴雨C14 | 1.75 | 2.75 | 4.8125 | |
环境高低温C15 | 4.25 | 4 | 17 |
1 | KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047. DOI: 10.1016/j.est.2019. 101047. |
2 | FREITAS GOMES I S, PEREZ Y, SUOMALAINEN E. Coupling small batteries and PV generation: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 126: 109835. DOI: 10.1016/j.rser.2020.109835. |
3 | ZHANG Q, PEI W H, LIU X D. Advances in electrochemical energy storage systems[J]. Electrochem, 2022, 3(2): 225-228. DOI: 10.3390/electrochem3020014. |
4 | CAVANAGH K, WARD J K, BEHRENS S, et al. Electrical energy storage: technology overview and applications[R]. Canberra: CSIRO, 2015. |
5 | 唐亮, 尹小波, 吴候福, 等. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652. DOI: 10.19799/j.cnki.2095-4239.2022.0305. |
TANG L, YIN X B, WU H F, et al. Demand for safety standards in the development of the electrochemical energy storage industry[J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. DOI: 10.19799/j.cnki.2095-4239.2022.0305. | |
6 | 郭鹏宇, 王智睿, 钱磊. 储能电站磷酸铁锂电池预制舱火灾事故分析[J]. 电力安全技术, 2019, 21(12): 26-30. |
GUO P Y, WANG Z R, QIAN L. Analysis of a fire accident in the prefabricated cabin of lithium iron phosphate battery in an energy storage power station[J]. Electric Safety Technology, 2019, 21(12): 26-30. | |
7 | 曹文炅, 雷博, 史尤杰, 等. 韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547. DOI: 10.19799/j.cnki.2095-4239.2020.0127. |
CAO W J, LEI B, SHI Y J, et al. Ponderation over the recent safety accidents of lithium-ion battery energy storage stations in Republic of Korea[J]. Energy Storage Science and Technology, 2020, 9(5): 1539-1547. DOI: 10.19799/j.cnki.2095-4239.2020.0127. | |
8 | 牛志远, 金阳, 孙磊, 等. 预制舱式磷酸铁锂电池储能电站燃爆事故模拟及安全防护仿真研究[J]. 高电压技术, 2022, 48(5): 1924-1933. DOI: 10.13336/j.1003-6520.hve.20201465. |
NIU Z Y, JIN Y, SUN L, et al. Safety protection simulation research and fire explosion accident simulation of prefabricated compartment lithium iron phosphate energy storage power station[J]. High Voltage Engineering, 2022, 48(5): 1924-1933. DOI: 10.13336/j.1003-6520.hve.20201465. | |
9 | SHEN X Y, HU Q R, ZHANG Q, et al. An analysis of li-ion induced potential incidents in battery electrical energy storage system by use of computational fluid dynamics modeling and simulations: The Beijing April 2021 case study[J]. Engineering Failure Analysis, 2023, 151: 107384. DOI: 10.1016/j.engfailanal.2023.107384. |
10 | 韩钰, 韩子忠. 基于火灾分析的光伏储能电站消防安全对策研究[J]. 消防科学与技术, 2024, 43(10): 1473-1476. DOI: 10.20168/j.1009-0029.2024.10.1473.04. |
HAN Y, HAN Z Z. Research on fire safety countermeasures for photovoltaic energy storage power stations based on fire analysis[J]. Fire Science and Technology, 2024, 43(10): 1473-1476. DOI: 10.20168/j.1009-0029.2024.10.1473.04. | |
11 | 宁雪峰, 张慧珍, 许加柱. 基于改进AHP-TOPSIS的储能电站安全综合评估[J]. 太阳能学报, 2024, 45(5): 251-259. DOI: 10.19912/j.0254-0096.tynxb.2022-1981. |
NING X F, ZHANG H Z, XU J Z. Comprehensive safety evaluation of energy storage power station based on improved ahp-topsis[J]. Acta Energiae Solaris Sinica, 2024, 45(5): 251-259. DOI: 10.19912/j.0254-0096.tynxb.2022-1981. | |
12 | 苗东升. 钱学森与系统工程[J]. 中国工程科学, 2002, 4(3): 16-20. DOI: 10.3969/j.issn.1009-1742.2002.03.003. |
MIAO D S. Qian Xuesen and system engineering[J]. Engineering Science, 2002, 4(3): 16-20. DOI: 10.3969/j.issn.1009-1742.2002. 03.003. | |
13 | 康荣学, 左哲. 双碳目标下电化学储能电站安全可持续发展战略研究[J]. 工业安全与环保, 2021, 47(S1): 35-38. |
KANG R X, ZUO Z. Study on safety and sustainable development strategy of electrochemical energy storage power station under dual carbon target[J]. Industrial Safety and Environmental Protection, 2021, 47(S1): 35-38. | |
14 | WANG Z P, YUAN J, ZHU X Q, et al. Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: A comparison study[J]. Journal of Energy Chemistry, 2021, 55: 484-498. DOI: 10.1016/j.jechem.2020.07.028. |
15 | JIA Z Z, QIN P, LI Z, et al. Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials[J]. Journal of Energy Storage, 2022, 50: 104302. DOI: 10.1016/j.est.2022.104302. |
16 | 朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239.2021.0369. |
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. DOI: 10.19799/j.cnki.2095-4239.2021. 0369. | |
17 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820. DOI: 10.1126/sciadv.aas9820. |
18 | HUANG Z H, LI X, WANG Q S, et al. Experimental investigation on thermal runaway propagation of large format lithium ion battery modules with two cathodes[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121077. DOI: 10.1016/j.ijheatmasstransfer.2021.121077. |
19 | YUAN L M, DUBANIEWICZ T, ZLOCHOWER I, et al. Experimental study on thermal runaway and vented gases of lithium-ion cells[J]. Process Safety and Environmental Protection, 2020, 144: 186-192. DOI: 10.1016/j.psep.2020.07.028. |
20 | GOLUBKOV A W, FUCHS D, WAGNER J, et al. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes[J]. RSC Advances, 2014, 4(7): 3633-3642. DOI: 10.1039/C3RA45748F. |
21 | MAO N, GADKARI S, WANG Z R, et al. A systematic investigation of thermal runaway characteristics, inflame evolution and post-mortem analysis caused by overcharging for lithium-ion batteries with different cathode materials[J]. Journal of Energy Storage, 2023, 74: 109421. DOI: 10.1016/j.est.2023. 109421. |
22 | LI K J, LI J H, GAO X L, et al. Effect of preload forces on multidimensional signal dynamic behaviours for battery early safety warning[J]. Journal of Energy Chemistry, 2024, 92: 484-498. DOI: 10.1016/j.jechem.2023.12.045. |
23 | WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. DOI: 10.1016/j.etran.2022.100190. |
24 | 北极星储能网. 针对储能电站事故原因韩国提出四大改善措施(附报告)[EB/OL]. [2019-06-13]. http://chuneng.bjx.com.cn/news/20190613/985892.shtml. |
25 | International Electrotechnical Commission (IEC). Secondary cells and batteries containing alkaline or other non-acid electrolytes-Safety requirements for secondary lithium cells and batteries, for use in industrial applications. IEC 62619∶2022[S]. Switzerland: IEC, 2022. |
26 | Underwriters Laboratories Inc. Joint Canada-United States National Standard. Standard for Safety-Batteries for Use in Stationary and Motive Auxiliary Power Applications.ANSI/CAN/UL 1973∶2022[S]. Northbrook: UL, 2022. |
27 | Underwriters Laboratories Inc. Joint Canada-United States National Standard. Standard for Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems. ANSI/CAN/UL 9540A∶2019[S]. Northbrook: UL, 2019. |
28 | 国家市场监督管理总局, 国家标准化管理委员会. 电力储能用锂离子电池: GB/T 36276—2023[S]. 北京: 中国标准出版社, 2023. |
29 | 国家市场监督管理总局, 国家标准化管理委员会. 电力储能用电池管理系统: GB/T 34131—2023[S]. 北京: 中国标准出版社, 2023. |
30 | 弓丽栋, 杨羽霏, 赵心宇, 等. 全球电化学储能市场分析与展望[J]. 水力发电, 2024, 50(10): 95-98, 113. DOI: 10.3969/j.issn.0559-9342.2024.10.017. |
GONG L D, YANG Y F, ZHAO X Y, et al. Analysis and outlook of global electrochemical energy storage market[J]. Water Power, 2024, 50(10): 95-98, 113. DOI: 10.3969/j.issn.0559-9342. 2024.10.017. | |
31 | LIU T, HU J, TAO C F, et al. Effect of parallel connection on 18650-type lithium ion battery thermal runaway propagation and active cooling prevention with water mist[J]. Applied Thermal Engineering, 2021, 184: 116291. DOI: 10.1016/j.applthermaleng. 2020.116291. |
32 | 张广续, 魏学哲, 陈思琦, 等. 高温循环老化对锂离子电池安全性影响研究[J]. 机械工程学报, 2023, 59(22): 33-45. DOI: 10.3901/JME.2023.22.033. |
ZHANG G X, WEI X Z, CHEN S Q, et al. Research on the impact of high-temperature cyclic aging on the safety of lithium-ion batteries[J]. Journal of Mechanical Engineering, 2023, 59(22): 33-45. DOI: 10.3901/JME.2023.22.033. | |
33 | 王海斌, 王茂华, 郭君, 等. 不同荷电状态下三元锂离子电池针刺热失控试验研究[J]. 安全与环境学报, 2021, 21(5): 2059-2067. DOI: 10.13637/j.issn.1009-6094.2020.0357. |
WANG H B, WANG M H, GUO J, et al. Experimental study on the thermal runaway of ternary lithium-ion batteries under different charge[J]. Journal of Safety and Environment, 2021, 21(5): 2059-2067. DOI: 10.13637/j.issn.1009-6094.2020.0357. | |
34 | 林健. 锂离子电池组一致性的测试方法探讨[J]. 电子质量, 2024(10): 82-87. |
LIN J. Discussion on testing method for consistency of Li-ion battery pack[J]. Electronics Quality, 2024(10): 82-87. | |
35 | 朱董军. 锂电池储能电站运行期安全风险管理研究[D]. 北京: 北京交通大学, 2023. DOI: 10.26944/d.cnki.gbfju.2023.003208. |
ZHU D J. Research on safety risk management of lithium battery energy storage power station during operation period[D]. Beijing: Beijing Jiaotong University, 2023. DOI: 10.26944/d.cnki.gbfju. 2023.003208. | |
36 | 桂久琪, 李林升, 毛晓, 等. 基于改进YOLOv4的锂电池缺陷检测方法[J]. 电子测量技术, 2022, 45(15): 144-150. DOI: 10.19651/j.cnki.emt.2209198. |
GUI J Q, LI L S, MAO X, et al. Lithium battery defect detection method based on improved YOLOv4[J]. Electronic Measurement Technology, 2022, 45(15): 144-150. DOI: 10.19651/j.cnki.emt.2209198. | |
37 | GOLD L, BACH T, VIRSIK W, et al. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission–Concept and laboratory testing[J]. Journal of Power Sources, 2017, 343: 536-544. DOI: 10.1016/j.jpowsour.2017.01.090. |
38 | APPLEBERRY M C, KOWALSKI J A, AFRICK S A, et al. Avoiding thermal runaway in lithium-ion batteries using ultrasound detection of early failure mechanisms[J]. Journal of Power Sources, 2022, 535: 231423. DOI: 10.1016/j.jpowsour.2022. 231423. |
39 | SHEN Y, ZOU B C, ZHANG Z D, et al. In situ detection of lithium-ion batteries by ultrasonic technologies[J]. Energy Storage Materials, 2023, 62: 102915. DOI: 10.1016/j.ensm.2023.102915. |
40 | 胡南. 基于倾斜光纤光栅传感探针的锂电池枝晶生长原位检测研究[D]. 广州: 暨南大学, 2020. DOI: 10.27167/d.cnki.gjinu.2020. 002093. |
HU N. In-situ detection of dendrite growth in lithium battery using tilted fiber grating sensors[D]. Guangzhou: Jinan University, 2020. DOI: 10.27167/d.cnki.gjinu.2020.002093. | |
41 | KIM J Y, WANG Z L, LEE S M, et al. Failure analysis of thermally abused lithium-ion battery cell by microscopy, electrochemical impedance spectroscopy, and acoustic emission[J]. Microelectronics Reliability, 2019, 100: 113363. DOI: 10.1016/j.microrel.2019.06.055. |
42 | LI Y X, JIANG L H, ZHANG N J, et al. Early warning method for thermal runaway of lithium-ion batteries under thermal abuse condition based on online electrochemical impedance monitoring[J]. Journal of Energy Chemistry, 2024, 92: 74-86. DOI: 10.1016/j.jechem.2023.12.049. |
43 | 郭东亮, 刘洋, 肖鹏, 等. 储能电站用锂离子电池热失控早期预警参数研究[J]. 消防科学与技术, 2020, 39(8): 1156-1159. |
GUO D L, LIU Y, XIAO P, et al. Research on early warning parameters of thermal runaway of lithium ion battery for energy storage power station[J]. Fire Science and Technology, 2020, 39(8): 1156-1159. | |
44 | 郑志坤. 磷酸铁锂储能电池过充热失控及气体探测安全预警研究[D]. 郑州: 郑州大学, 2020. DOI: 10.27466/d.cnki.gzzdu.2020. 002283. |
ZHENG Z K. Study on Thermal runaway and safety warning via gas detection of LiFePO4 energy storage battery under overcharge condition[D]. Zhengzhou: Zhengzhou University, 2020. DOI: 10.27466/d.cnki.gzzdu.2020.002283. | |
45 | 王铭民, 孙磊, 郭鹏宇, 等. 基于气体在线监测的磷酸铁锂储能电池模组过充热失控特性[J]. 高电压技术, 2021, 47(1): 279-286. DOI: 10.13336/j.1003-6520.hve.20200227004. |
WANG M M, SUN L, GUO P Y, et al. Overcharge and thermal runaway characteristics of lithium iron phosphate energy storage battery modules based on gas online monitoring[J]. High Voltage Engineering, 2021, 47(1): 279-286. DOI: 10.13336/j.1003-6520.hve.20200227004. | |
46 | SU T L, LYU N W, ZHAO Z X, et al. Safety warning of lithium-ion battery energy storage station via venting acoustic signal detection for grid application[J]. Journal of Energy Storage, 2021, 38: 102498. DOI: 10.1016/j.est.2021.102498. |
47 | LYU N W, JIN Y, MIAO S, et al. Fault warning and location in battery energy storage systems via venting acoustic signal[EB/ OL]. [2021-12-21]. https://www.researchgate.net/publication/353537451. |
48 | 唐文杰, 姜欣, 刘昊琰, 等. 基于气液逸出物图像识别的锂离子电池火灾早期预警[J]. 高电压技术, 2022, 48(8): 3295-3304. DOI: 10.13336/j.1003-6520.hve.20212064. |
TANG W J, JIANG X, LIU H Y, et al. Early warning of lithium-ion battery fire based on image recognition of gas-liquid escape[J]. High Voltage Engineering, 2022, 48(8): 3295-3304. DOI: 10. 13336/j.1003-6520.hve.20212064. | |
49 | CUMMINGS S R, SWARTZ S L, FRANK N B, et al. Systems and methods for monitoring for a gas analyte: US10877011[P]. 2020-12-29. |
50 | 王春力, 贡丽妙, 亢平, 等. 锂离子电池储能电站早期预警系统研究[J]. 储能科学与技术, 2018, 7(6): 1152-1158. DOI: 10.12028/j.issn.2095-4239.2018.0174. |
WANG C L, GONG L M, KANG P, et al. Research on early warning system of lithium ion battery energy storage power station[J]. Energy Storage Science and Technology, 2018, 7(6): 1152-1158. DOI: 10.12028/j.issn.2095-4239.2018.0174. | |
51 | 李润源, 郭傅傲, 赵钢超. 集装箱式锂离子电池储能系统消防安全早期预警方法[J]. 储能科学与技术, 2024, 13(5): 1595-1602. DOI: 10.19799/j.cnki.2095-4239.2023.0950. |
LI R Y, GUO F A, ZHAO G C. Early warning method for fire safety of containerized lithium-ion battery energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(5): 1595-1602. DOI: 10.19799/j.cnki.2095-4239.2023.0950. | |
52 | 刘同宇, 李师, 付卫东, 等. 大容量磷酸铁锂动力电池热失控预警策略研究[J]. 中国安全科学学报, 2021, 31(11): 120-126. DOI: 10.16265/j.cnki.issn1003-3033.2021.11.017. |
LIU T Y, LI S, FU W D, et al. Study on early warning strategy of large LFP traction battery's thermal runaway[J]. China Safety Science Journal, 2021, 31(11): 120-126. DOI: 10.16265/j.cnki.issn1003-3033.2021.11.017. | |
53 | 李首顶, 李艳, 田杰, 等. 锂离子电池电力储能系统消防安全现状分析[J]. 储能科学与技术, 2020, 9(5): 1505-1516. DOI: 10.19799/j.cnki.2095-4239.2020.0111. |
LI S D, LI Y, TIAN J, et al. Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications[J]. Energy Storage Science and Technology, 2020, 9(5): 1505-1516. DOI: 10.19799/j.cnki.2095-4239.2020.0111. |
[1] | 许利君, 许利红, 宋方宇轩. 电化学储能电站的系统故障监测与诊断分析[J]. 储能科学与技术, 2024, 13(8): 2788-2790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||