储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2352-2361.doi: 10.19799/j.cnki.2095-4239.2025.0091

• 储能系统与工程 • 上一篇    下一篇

自增压型超高压水热储能实验和数值模拟研究

刘康彬1(), 申海川2, 赵贯甲1(), 谢文涛3, 荀玮瑶3   

  1. 1.太原理工大学电气与动力工程学院,山西 太原 030024
    2.中国船舶集团有限公司第七〇三研究所,黑龙江 哈尔滨 150078
    3.高效储热与低碳供热山西省重点实验室,山西 太原 030021
  • 收稿日期:2025-02-05 修回日期:2025-03-05 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 赵贯甲 E-mail:liukangbin@foxmail.com;zhaoguanjia@tyut.edu.cn
  • 作者简介:刘康彬(2001—),男,硕士研究生,研究方向为高温水储能系统,E-mail:liukangbin@foxmail.com
  • 基金资助:
    国家自然科学基金(51976132)

Experimental and numerical study of self-pressurized ultrahigh-pressure hydrothermal energy storage

Kangbin LIU1(), Haichuan SHEN2, Guanjia ZHAO1(), Wentao XIE3, Weiyao XUN3   

  1. 1.College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.NO. 703 Research Institute of China State Shipbuilding Company Limited, Harbin 150078, Heilongjiang, China
    3.Shanxi Provincial Key Laboratory of High Efficiency Heat Storage and Low Carbon Heat Supply, Taiyuan 030021, Shanxi, China
  • Received:2025-02-05 Revised:2025-03-05 Online:2025-06-28 Published:2025-06-27
  • Contact: Guanjia ZHAO E-mail:liukangbin@foxmail.com;zhaoguanjia@tyut.edu.cn

摘要:

超高压水热储能系统具有储能密度高、储热时间长、成本低以及可实现模块化应用等优势,可广泛部署于工业储热供热和热电调峰等领域。本工作搭建了自增压型超高压水热储能实验系统并针对实验中电加热过程加热器下方自然对流较差,存在温度分层导致储热效率低等问题开展了数值模拟研究。模拟结果显示,通过增加外部循环泵可以显著改善温度分层,提高系统储热效率。电储热效率相比较原系统提高了约12%,加热60 min后,重力方向最大温差由45.93 ℃降低至0.93 ℃。本工作通过引入描述循环泵安装位置与储罐尺寸比例的无量纲数λ以及表征循环水量与系统储水量比例的无量纲数δ两个指标,系统评价了外循环泵对于系统储热效率的影响。模拟结果显示,λ在0.5左右时,储罐内部流场较为均匀、温度梯度相对较小,系统储热效率也更高。当δ达到4.42时,储罐内部温度均匀性好、热响应时间短、储热效率高。本工作研究为提高卧式高温自增压储热水罐储热效率提供了理论指导,有望推动高压水热储能在工业储能领域的应用。

关键词: 高压水热储能, 数值模拟, 循环泵, 储热效率

Abstract:

High-pressure hydrothermal energy storage systems have gained widespread deployment in industrial heat storage and peak load balancing for grids owing to their high energy storage density, long thermal storage time, low cost, and the possibility of modularity. In this study, we developed a self-pressurized, ultrahigh-pressure hydrothermal energy storage system. In addition, we performed numerical simulations to understand the experimentally observed insufficient natural convection under electric heaters and lower heat storage efficiency due to the temperature gradient. The simulation results show that the temperature gradient can be significantly improved by including an external circulation pump, thereby improving thermal storage efficiency. The heat storage efficiency was improved by approximately 12%, and the maximum temperature difference in the gravity direction was reduced from 45.93 ℃ to 0.93 ℃ after heating for 60 min. Furthermore, we evaluated the effect of external circulation pumps on the thermal storage efficiency of the system using two indicators: dimensionless constants λ and δ, which describe the ratio of the circulating pump installation position to the storage tank size and the ratio of the circulating volume to the tank volume, respectively. With λ≈0.5, the flow within the storage tank was more consistent, the temperature gradient was relatively small, and the thermal efficiency of the storage system improved. As δ increased to 4.42, the uniformity of the internal temperature in the storage tank was optimal, the response time to thermal changes decreased, and the efficiency of thermal storage increased. This study provides conceptual insights into the thermal storage performance of horizontally oriented, high-temperature, self-pressurized hot water reservoirs, thereby facilitating the implementation of high-pressure hydrothermal energy storage systems in industrial applications.

Key words: high-pressure hydrothermal energy storage, numerical simulation, circulation pump, thermal energy storage efficiency

中图分类号: