储能科学与技术 ›› 2013, Vol. 2 ›› Issue (1): 12-23.doi: 10.3969/j.issn.2095-4239.2013.01.002
杨军
收稿日期:
2012-11-21
出版日期:
2013-02-19
发布日期:
2013-02-19
作者简介:
杨军(1972--),男,研究员,博士生导师,研究方向为金属,半导体及它们的复合纳米材料,应用催化和水处理技术,E-mail:jyang@mail.ipe.ac.cn.
基金资助:
YANG Jun
Received:
2012-11-21
Online:
2013-02-19
Published:
2013-02-19
摘要: 最近材料合成开始专注于包含不同类别成分,各成分间具有接触界面的半导体和贵金属的复合材料.这种结构的材料中各成分间的物理和化学性质具有明显的差别,构成一个独特的,多功能的,具有某种可调或可强化性质的复合系统,而这些性质用其它方法则不易获得.复合材料研究成果的积累为这些材料在能源转化方面的应用创造了无数的机会,同时也是巨大的挑战.除了促进载流子分离,复合材料另一个可被利用的性质是其中半导体和金属区域间的电子耦合效应.这个研究领域的主要目标包括:①开发制备高质量半导体纳米粒子的简便易行的方法;②建立在半导体纳米粒子上沉积金属的简单可行的途径;③了解制备过程的化学原理,从而为下一步更广泛的制备和操控建立有效机制;④探索这些复合材料在能源转化领域的应用.
中图分类号:
杨军. 半导体-贵金属复合结构纳米材料的研究进展[J]. 储能科学与技术, 2013, 2(1): 12-23.
YANG Jun. Research progress on composite nanomaterials of semiconductor and noble metals[J]. Energy Storage Science and Technology, 2013, 2(1): 12-23.
[1] Steckel J S,Snee P,Coe-Sullivan S,et al. Color-saturated green-emitting QD-LEDs[J]. Angewandte Chemie International Edition ,2006,45:5796-5799. [2] Caruge J M,Halpert J E,Wood V,et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics ,2008,2:247-250. [3] Huynh W U,Dittmer J J,Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science ,2002,295:2425-2427. [4] Gur L,Fromer N A,Geier M L,et al. Air-stable all-inorganic nanocrystal solar cells processed from solution[J]. Science ,2005,310:462-465. [5] Bruchez M,Moronne M,Gin P,et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science ,1998,281:2013-2016. [6] Chan W C W,Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science ,1998,281:2016-2018. [7] Mattoussi H,Mauro J M,Goldman E R,et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein[J]. Journal of the American Chemical Society ,2000,122:12142-12150. [8] Alivisatos A P. The use of nanocrystals in biological detection[J]. Nature Biotechnology ,2004,22:47-52. [9] Bäumle M,Stamou D,Segura J M,et al. Highly fluorescent streptavidin-coated CdSe nanoparticles:Preparation in water,characterization,and micropatterning[J]. Langmuir ,2004,20:3828-3831. [10] Zheng Y,Yang Z,Ying J Y. Aqueous synthesis of glutathione-capped ZnSe and Zn 1 - x Cd x Se alloyed quantum dots[J]. Advanced Materials ,2007,19:1475-1479. [11] Murray C B,Norris D J,Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur,selenium,tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society ,1993,115:8706-8715. [12] Peng X,Manna L,Yang W,et al. Shape control of CdSe nanocrystals[J]. Nature ,2000,404:59-61. [13] Peng Z A,Peng X. Formation of high-quality CdTe,CdSe,and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society ,2001,123:183-184. [14] Li J J,Wang Y A,Guo W,et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core-shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J]. Journal of the American Chemical Society ,2003,125:12567-12575. [15] Jasieniak J,Bullen C,van Embden J,et al. Phosphine-free synthesis of CdSe nanocrystals[J]. The Journal of Physical Chemistry B ,2005,109:20665-20668. [16] Sapra S,Rogach A L,Feldmann J. Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil[J]. Journal of Materials Chemistry ,2006,16:3391-3395. [17] Deng Z,Gao L,Tang F,et al. A new route to zinc-blende CdSe nanocrystals:Mechanism and synthesis[J]. The Journal of Physical Chemistry B,2005,109:16671-16675. [18] Wei Y,Yang J,Lin A W H,et al. Highly reactive Se precursor for the phosphine-free synthesis of metal selenide nanocrystals[J]. Chemistry of Materials ,2010,22:5672-5677. [19] Peng X,Schlamp M C,Kadavanich A V,et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J]. Journal of the American Chemical Society ,1997,119:7019-7029. [20] Jun S,Jang E,Lim J E. Synthesis of multi-shell nanocrystals by a single step coating process[J]. Nanotechnology ,2006,17:3892-3896. [21] Mokari T,Rothenberg E,Popov I,et al. Selective growth of metal tips onto semiconductor quantum rods and tetrapods[J]. Science ,2004,304:1787-1790. [22] Mokari T,Sztrum C G,Salant A,et al. Formation of asymmetric one-side metal-tipped semiconductor nanocrystal dots and rods[J]. Nature Materials ,2005,4:855-863. [23] Saunders A E,Popov I,Banin U. Synthesis of hybrid CdS-Au colloidal nanostructures[J]. The Journal of Physical Chemistry B,2006,110:25421-25429. [24] Menagen G,Mocatta D,Salant A,et al. Selective gold growth on CdSe seeded CdS nanorods[J]. Chemistry of Materials ,2008,20:6900-6902. [25] Costi R,Saunders A E,Elmalem E,et al. Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells[J]. Nano Letters ,2008,8:637-641. [26] Mokari T,Aharoni A,Popov I,et al. Diffusion of gold into InAs nanocrystals[J]. Angewandte Chemie International Edition ,2006,45:8001-8005. [27] Yang J,Levina L,Sargent E H,et al. Heterogeneous deposition of noble metals on semiconductor nanoparticles in organic or aqueous solvents[J]. Journal of Materials Chemistry ,2006,16:4025-4028. [28] Yang J,Elim H I,Zhang Q,et al. Rational synthesis,self-assembly,and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition[J]. Journal of the American Chemical Society ,2006,128:11921-11926. [29] Shi W L,Zeng H,Sahoo Y,et al. A general approach to binary and ternary hybrid nanocrystals[J]. Nano Letters ,2006,6:875-881. [30] Talapin D V,Yu H,Shevchenko E V,et al. Synthesis of colloidal PbSe/PbS core-shell nanowires and PbS/Au nanowire-nanocrystal heterostructures[J]. The Journal of Physical Chemistry C ,2007,111:14049-14054. [31] Zhao N N,Li L S,Huang T,et al. Controlled synthesis of PbS-Au nanostar-nanoparticle heterodimers and cap-like Au nanoparticles[J]. Nanoscale ,2010,2:2418-2423. [32] Huang S S,Huang J M,Yang J A,et al. Chemical synthesis,structure characterization,and optical properties of hollow PbSx-solid Au heterodimer nanostructures[J]. Chemistry-A European Journal ,2010,16:5920-5926. [33] Yang J,Ying J Y. Room-temperature synthesis of nanocrystalline Ag 2 S and its nanocomposites with gold[J]. Chemical Communications ,2009,22:3187-3189. [34] Yang J,Ying J Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis[J]. Nature Materials ,2009,8:683-689. [35] Yang J,Lee J Y,Ying J Y. Phase transfer and its applications in nanotechnology[J]. Chemical Society Reviews ,2011,40:1672-1679. [36] Brust M,Walker M,Bethell D,et al. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system[J]. Journal of the Chemical Society , Chemical Communications ,1994,7:801-802. [37] Brust M,Fink J,Bethell D,et al. Synthesis and reactions of functionalised gold nanoparticles[J]. Journal of the Chemical Society , Chemical Communications ,1995,16:1655-1656. [38] Ginger D S,Greenham N C. Charge injection and transport in films of CdSe nanocrystals[J]. Journal of Applied Physics ,2000,87:1361-1368. [39] Koch N,Kahn A,Pireaux J J,et al. Conjugated organic molecules on metal versus polymer electrodes:Demonstration of a key energy level alignment mechanism[J]. Applied Physics Letters ,2003,82:70-72. [40] Salant A,Amitay-Sadovsky E,Banin U. Direct self-assembly of gold-tipped CdSe nanorods[J]. Journal of the American Chemical Society ,2006,128:10006-10007. [41] Chan W C W,Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science ,1998,281:2016-2018. [42] Willoughby A F W. Atomic diffusion in semiconductors[J]. Reports on Progress in Physics ,1978,41:1665-1705. [43] Gösele U,Frank W,Seeger A. Mechanism and kinetics of the diffusion of gold in silicon[J]. Applied Physics A ,1980,23:361-368. [44] Hiraki A. Low temperature reactions at Si/metal interfaces:What is going on at the interfaces[J]. Surface Science Reports ,1983,3:357-412. [45] Gösele U M. Fast diffusion in semiconductors[J]. Annual Review of Materials Science ,1988,18:257-282. [46] Mathiot D. Gold,self-,and dopant diffusion in silicon[J]. Physical Review B ,1992,45:13345-13355. [47] Yin Y,Rioux R M,Erdonmez C K,et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect[J]. Science ,2004,304:711-714. [48] Son D H,Hughes S M,Yin Y,et al. Cation exchange reactions in ionic nanocrstals[J]. Science ,2004,306:1009-1012. [49] Zhao N,Qi L. Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants[J]. Advanced Materials ,2006,18:359-362. [50] Lee J S,Shevchenko E V,Talapin D V. Au-PbS core-shell nanocrystals:Plasmonic absorption enhancement and electrical doping via intra-particle charge transfer[J]. Journal of the American Chemical Society ,2008,130:9673-9675. [51] Zhu J M,Shen Y H,Xie A J,et al. Tunable surface plasmon resonance of Au@Ag 2 S core-shell nanostructures containing voids[J]. Journal of Materials Chemistry ,2009,19:8871-8875. [52] Li M,Yu X-F,Liang S,et al. Synthesis of Au-CdS core-shell hetero-nanorods with efficient exciton-plasmon interactions[J]. Advanced Functional Materials ,2011,21:1788-1794. [53] Robinson R D,Sadtler B,Demchenko D O,et al. Spontaneous superlattice formation in nanorods through partial cation exchange[J]. Science ,2007,317:355-358. [54] Dukovic G,Merkle M G,Nelson J H,et al. Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures[J]. Advanced Materials ,2008,20:4306-4311. [55] Elmalem E,Saunders A E,Costi R,et al. Growth of photocatalytic CdSe-Pt nanorods and nanonets[J]. Advanced Materials ,2008,20:4312-4317. [56] Habas S E,Yang P D,Mokari T. Selective growth of metal and binary metal tips on CdS nanorods[J]. Journal of the American Chemical Society ,2008,130:3294-3295. [57] Harbour J R,Wolkow R,Hair M L. Effect of platinization on the photoproperties of CdS pigments in dispersion. Determination by H 2 evolution,O 2 uptake,and electron spin resonance spectroscopy[J]. The Journal of Physical Chemistry ,1981,85:4026-4029. [58] Reber J F,Rusek M. Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide[J]. The Journal of Physical Chemistry ,1986,90:824-834. [59] Frank A J,Goren Z,Willner I. Photohydrogenation of acetylene and ethylene by Pt and Rh supported on CdS semiconductor particles[J]. Journal of the Chemical Society , Chemical Communications ,1986,15:1029-1030. [60] Manna L,Scher E C,Li L S,et al. Epitaxial growth and photochemical annealing of grade CdS/ZnS shells on colloidal CdSe nanorods[J]. Journal of the American Chemical Society ,2002,124:7136-7145. [61] Bard A J. Standard Potentials in Aqueous Solutions[M]. IUPAC,Marcel Dekker,New York,1985. [62] Carbone L,Kudera S,Giannini C,et al. Selective reactions on the tips of colloidal semiconductor nanorods[J]. Journal of Materials Chemistry ,2006,16:3952-3956. [63] Motte L,Pileni M P. Influence of length of alkyl chains used to passivate silver sulfide nanoparticles on two- and three- dimensional self-organization[J]. The Journal of Physical Chemistry B,1998,102:4104-4109. [64] Gao F,Lu Q,Zhao D. Controllable assembly of ordered semiconductor Ag 2 S nanostructures[J]. Nano Letters ,2003,3:85-88. [65] Liu J,Raveendran P,Shervani Z,et al. Synthesis of Ag 2 S quantum dots in water-in CO 2 microemulsions[J]. Chemical Communications ,2004,22:2582-2583. [66] Wang X,Liu W,Hao J,et al. A simple large-scale synthesis of well-defined silver sulfide semiconductor nanoparticles with adjustable sizes[J]. Chemistry Letters ,2005,34:1664-1665. [67] Gao F,Lu Q,Komarneni S. Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions[J]. Chemistry of Materials ,2005,17:856-860. [68] Wang X,Zhuang J,Peng Q,et al. A general strategy for nanocrystal synthesis[J]. Nature ,2005,437:121-124. [69] Shi H,Fu X,Zhou X,et al. Preparation of organic fluids with high loading concentration of Ag 2 S nanoparticles using the extractant cyanex 301[J]. Journal of Materials Chemistry ,2006,16:2097-2101. [70] Brelle M C,Zhang J Z,Nguyen L,et al. Synthesis and ultrafast study of cysteine- and glutathione-capped Ag 2 S semiconductor colloidal nanoparticles[J]. The Journal of Physical Chemistry A ,1999,103:10194-10201. [71] Yang L,Xing R,Shen Q,et al. Fabrication of protein-conjugated silver sulfide nanorods in the bovine serum albumin solution[J]. The Journal of Physical Chemistry B ,2006,110:10534-10539. [72] Mo X,Krebs M P,Yu S M. Directed synthesis and assembly of nanoparticles using purple membrane[J]. Small ,2006,2:526-529. [73] Yang J,Ying J Y. Nanocomposites of Ag 2 S and noble metals[J]. Angewandte Chemie International Edition ,2011,50:4637-4643. [74] Yang J,Lee J Y,Too H P,et al. A bis( p -sulfonatophenyl)phenyl phosphine-based synthesis of hollow Pt nanospheres[J]. The Journal of Physical Chemistry B ,2006,110:125-129. [75] Tan Y-N,Yang J,Lee J Y,et al. Mechanistic study on the bis( p -sulfonatophenyl)phenylphosphine synthesis of monometallic Pt hollow nanoboxes using Ag*-Pt core-shell nanocubes as sacrificial templates[J]. The Journal of Physical Chemistry C ,2007,111:14084-14090. [76] Peng Z,Yang H. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures[J]. Journal of the American Chemical Society ,2009,131:7542-7543. [77] Lim B,Jiang M,Camargo P H C,et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science ,2009,324:1302-1305. [78] Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells:A review[J]. Materials Chemistry and Physics ,2003,78:563-573. [79] Liu H,Song C,Zhang L,et al. A review of anode catalysis in the direct methanol fuel cell[J]. Journal of Power Sources ,2006,155:95-110. [80] Allen R G,Lim C,Yang L X,et al. Novel anode structure for the direct methanol fuel cell[J]. Journal of Power Sources ,2005,143:142-149. [81] Liu Z,Lee J Y,Han M,et al. Synthesis and characterization of PtRu/C catalysts from microemulsions and emulsions[J]. Journal of Materials Chemistry ,2002,12:2453-2458. [82] Wagner C D,Naumkin A V,Kraut-Vass A,et al. NIST standard reference database 20,Version 3.2(Web Version). [83] Pelizzetti E,Schiavello M. Photochemical Conversion and Storage of Solar Energy[M]. Berlin:Springer,1990. [84] Eastman D E. Photoelectric work functions of transition,rare earth,and noble metals[J]. Physical Review B ,1970,2:1-2. [85] Michaelson H B. The work function of the elements and its periodicity[J]. Journal of Applied Physics ,1977,48:4729-4733. [86] Höhler G. Solid Surface Physics[M]. Berlin:Springer,1979. [87] Steele B C,Heinzel H A. Materials for fuel-cell technologies[J]. Nature ,2001,414:345-352. [88] Perry M L,Fuller T F. A historical perspective of fuel cell technology in the 20th century[J]. Journal of The Electrochemical Society ,2002,149:S59-S67. [89] Chen J,Lim B,Lee E P,et al. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications[J]. Nano Today ,2009,4:81-95. [90] Goodenough J B,Hamnett A,Kennedy B J,et al. XPS investigation of platinized carbon electrodes for the direct methanol air fuel cell[J]. Electrochimica Acta ,1987,32:1233-1238A. [91] Motoo S,Furuya N. Electrochemistry of platinum single crystal surfaces:Part II. Structural effect on formic acid oxidation and poison formation on Pt (111),(100) and (110) [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry ,1985,184:303-316. [92] Gurau B,Viswanathan R,Liu R,et al. Structural and electrochemical characterization of binary,ternary,and quaternary platinum alloy catalysts for methanol electro-oxidation[J]. The Journal of Physical Chemistry B ,1998,102:9997-10003. [93] Cotton F A,Wilkinson G. Advanced Inorganic Chemistry[M]. New York:Wiley-Interscience,1980. [94] Shukla A K,Aricò A S,El-Khatib K M,et al. An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons[J]. Applied Surface Science ,1999,137:20-29. [95] Yeager E. Electrocatalysts for O 2 reduction[J]. Electrochimica Acta ,1984,29:1527-1537. [96] Aricò A S,Srinivasan S,Antonucci V. DMFCs:from Fundamental aspects to technology development[J]. Fuel Cells ,2001,1:133-161. [97] Marković N M,Ross P N. Surface science studies of model fuel cell electrocatalysts[J]. Surface Science Reports ,2002,45:117-229. [98] Chen W,Kim J,Sun S,et al. Electrocatalytic reduction of oxygen by FePt alloy nanoparticles [J]. The Journal of Physical Chemistry C ,2008,112:3891-3898. [99] Toda T,Iqarashi H,Uchida H,et al. Enhancement of the electroreduction of oxygen on Pt alloys with Fe,Ni,and Co[J]. Journal of The Electrochemical Society ,1999,146:3750-3756. [100] Zhang J,Vukmirovic M B,Sasaki K,et al. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics[J]. Journal of the American Chemical Society ,2005,127:12480-12481. [101] Zhang J,Vukmirovic M B,Xu Y,et al. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates[J]. Angewandte Chemie International Edition ,2005,44:2132-2135. [102] Stamenković V R,Fowler B,Mun B S,et al. Improved osygen reduction activity on Pt 3 Ni(111) via increased surface site availability[J]. Science ,2007,315:493-497. [103] Stamenković V R,Mun B S,Arenz M,et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials ,2007,6:241-247. [104] Xu C,Goodman D W. Adsorption and reaction of formic acid on a pseudomorphic palladium monolayer on Mo(110) [J]. The Journal of Physical Chemistry ,1996,100:245-252. [105] Baldauf M,Kolb D M. Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes[J]. The Journal of Physical Chemistry ,1996,100:11375-11381. [106] Kibler L A,Kolb D M. Physical electrochemistry:Recent developments[J]. Zeitschrift für Physikalische Chemie ,2003,217:1265-1279. [107] Chorkendorff I,Niemantsverdriet J W. Concepts of Modern Catalysis and Kinetics[M]. Weinheim:Wiley-VCH,2003. [108] Kibbler L A,El-Aziz A M,Hoyer R,et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition ,2005,44:2080-2084. [109] Kumar S,Zou S. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles:Effects of film thickness[J]. Langmuir ,2007,23:7365-7371. [110] Naohara H,Ye S,Uosaki K. Electrocatalytic reactivity for oxygen reduction at epitaxially grown Pd thin layers of various thickness on Au(111) and Au(100) [J]. Electrochimica Acta ,2000,45:3305-3309. [111] Naohara H,Ye S,Uosaki K. Thickness dependent electrochemical reactivity of epitaxially palladium thin layers on Au(111) and Au(110) surfaces[J]. Journal of Electroanalytical Chemistry ,2001,500:435-445. [112] El-Aziz A M,Kibler L A. Influence of steps on the electrochemical oxidation of CO adlayers on Pd(111) and on Pd films electrodeposited onto Au(111) [J]. Journal of Electroanalytical Chemistry ,2002,534:107-114. [113] Kibler L A,El-Aziz A M,Kolb D M. Electrochemical behaviour of pseudomorphic overlayers:Pd on Au(111) [J]. Journal of Molecular Catalysis A: Chemical ,2003,199:57-63. [114] Yang J H,Cheng C H,Zhou W,et al. Methanol-tolerant heterogeneous PdCo@PdPt/C electrocatalyst for the oxygen reduction reaction[J]. Fuel Cells ,2010,10:907-913. [115] Yang J H,Zhou W,Cheng C H,et al. Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst[J]. ACS Applied Materials & Interfaces ,2010,2:119-126. [116] Yang J H,Lee J Y,Zhang Q,et al,Carbon-supported pseudo-core-shell Pd-Pt nanoparticles for ORR with and without methanol[J]. Journal of the Electrochemical Society ,2008,155:B776-B781. [117] Yang J,Chen X,Ye F,et al. Core-shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect[J]. Journal of Materials Chemistry ,2011,21:9088-9094. [118] Adzic R R,Zhang J,Sasaki K,et al. Platinum monolayer fuel cell electrocatalysis[J]. Topics in Catalysis ,2007,46:249-262. [119] Stamenković V R,Schmidt T J,Ross P N,et al. Surface composition effects in electrocatalysis:Kinetics of oxygen reduction on well-defined Pt 3 Ni and Pt 3 Co alloy surfaces[J]. the Journal of Physical Chemistry B ,2002,106:11970-11979. [120] Xu Y,Ruban A V,Mavrikakis M. Adsorption and dissociation of O 2 on Pt-Co and Pt-Fe alloys[J]. Journal of the American Chemical Society ,2004,126:4717-4725. [121] Gasteiger H A,Marković N M,Ross P N,et al. Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys[J]. the Journal of Physical Chemistry ,1993,97: 12020-12029. [122] Wang J M,Brankovic S R,Zhu Y,et al. Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles[J]. Journal of the Electrochemical Society ,2003,150:A1108-A1117. [123] Antolini E,Salgado J R C,Gonzalez E R. Carbon supported Pt75M25 (M = Co,Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells[J]. Journal of Electroanalytical Chemistry ,2005,580:145-154. [124] Storhoff J J,Elghanian R,Mucic R C,et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes[J]. Journal of the American Chemical Society ,1998,120:1959-1964. [125] Storhoff J J,Mirkin C A. Programmed materials synthesis with DNA[J]. Chemical Reviews ,1999,99:1849-1862. [126] Reynolds R A,Mirkin C A,Letsinger R L. Homogeneous,nanoparticle-based quantitative colorimetric detection of oligonucleotides[J]. Journal of the American Chemical Society ,2000,122:3795-3796. [127] Mirkin C A. Programming the assembly of two- and three- dimensional architectures with DNA and nanoscale inorganic building blocks[J]. Inorganic Chemistry ,2000,39:2258-2272. [128] Jin R,Wu G,Li Z,et al. What controls the melting properties of DNA-linked gold nanoparticle assemblies[J]. Journal of the American Chemical Society ,2003,125:1643-1654. [129] Negishi Y,Takasugi Y,Sato S,et al. Magic-numbered Au n clusters protected by glutathione monolayers ( n = 18,21,25,28,32,39) :Isolated and spectroscopic characterization[J]. Journal of the American Chemical Society ,2004,126:6518-6519. [130] Wang G,Huang T,Murray R W,et al. Near-IR luminescence of monolayer-protected metal clusters[J]. Journal of the American Chemical Society ,2005,127:812-813. [131] Negishi Y,Nobusada K,Tsukuda T. Glutathione-protected gold clusters revisited:Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals[J]. Journal of the American Chemical Society ,2005,127:5261-5270. [132] Shichibu Y,Negishi Y,Tsunoyama H,et al. Extremely high stability of glutathionate-protected Au 25 clusters against core etching[J]. Small ,2007,3:835-839. [133] Negishi Y,Chaki N K,Shichibu Y,et al. Origin of magic stability of thiolated gold clusters:a Case study on Au 25 (SC 6 H 13 ) 18 [J]. Journal of the American Chemical Society ,2007,129:11322-11323. [134] Xie J,Zheng Y,Ying J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. Journal of the American Chemical Society ,2009,131:888-889. [135] Xie J,Zheng Y,Ying J Y. Highly selective and ultrasensitive detection of Hg 2+ based on fluorescence quenching of Au nanoclusters by Hg 2+ -Au + interactions[J]. Chemical Communications ,2010,46:961-963. [136] Svoboda J,Fischer F D,Fratzl P,et al. Diffusion in multi-component systems with no or dense sources and sinks for vacancies[J]. Acta Materialia ,2002,50:1369-1381. [137] Matsukawa K,Shirai K,Yamaguchi H,et al. Diffusion of transition-metal impurities in silicon[J]. Physica B : Condensed Matter ,2007,401-402:151-154. [138] Höglund A,Castleton C W M,Mirbt S. Diffusion mechanism of Zn in InP and GaP from first principles[J]. Physical Review B ,2008,77:113201. [139] Baykov V I,Korzhavyi P A,Johansson B. Diffusion of interstitial Mn in the dilute magnetic semiconductor (Ga,Mn)As:the Effect of a charge state[J]. Physical Review Letters ,2008,101:177204. [140] Yu H C,Van der Ven A,Thornton K. Theory of grain boundary diffusion induced by the Kirkendall effect[J]. Applied Physics Letters ,2008,93:091908. [141] Van der Ven A,Yu H C,Ceder G,et al. Vacancy mediated substitutional diffusion in binary crystalline solids[J]. Progress in Materials Science ,2010,55:61-105. [142] Franchini I R,Bertoni G,Falqui A,et al. Colloidal PbTe-Au nanocrystal heterostructures[J]. Journal of Materials Chemistry ,2010,20:1357-1366. [143] Yang J,Ying J Y. Diffusion of gold from the inner core to the surface of Ag 2 S nanocrystals[J]. Journal of the American Chemical Society ,2010,132:2114-2115. [144] Tzeli D,Petsalakis I D,Theodorakopoulos G. Theoretical study of adsorption and diffusion of group IIIA metals on Si(111) [J]. the Journal of Physical Chemistry C,2009,113:13924-13932. [145] Ostwald W. Studien uber die bildung und umwandlung fester korper[J]. Zeitschrift für Physikalische Chemie ,1897,22:289-330. [146] Qu J,Liu H,Wei Y,et al. Coalescence of Ag 2 S and Au nanocrystals at room temperature[J]. Journal of Materials Chemistry ,2011,21: 11750-11753. [147] Henglein A,Holzwarth A,Mulvaney P. Fermi level equilibration between colloidal lead and silver particles in aqueous solution[J]. the Journal of Physical Chemistry ,1992,96: 8700-8702. [148] Courty A,Henry A I,Goubet N,et al. Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals[J]. Nature Materials ,2007,6:900-907. [149] Ramirez E,Eradès L,Philippot K,et al. Shape control of platinum nanoparticles[J]. Advanced Functional Materials ,2007,17:2219-2228. [150] Johnson S H,Johnson C L,May S J,et al. Co@CoO@Au core-multi-shell nanocrystals[J]. Journal of Materials Chemistry ,2010,20:439-443. [151] Grouchko M,Popov I,Uvarov V,et al. Coalescence of silver nanoparticles at room temperature:Unusual crystal structure transformation and dendrite formation induced by self-assembly[J]. Langmuir ,2009,25:2501-2503. [152] Radziuk D V,Zhang W,Shchukin D,et al. Ultrasonic alloying of preformed gold and silver nanoparticles[J]. Small ,2010,6:545-553. |
[1] | 胡冶州, 王双, 申涛, 朱叶, 王得丽. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. |
[2] | 张申智, 王立开, 孙迎港, 吕恒, 杨子寅, 李磊磊, 李忠芳. 二维碳载Au4Pd2催化剂的构建及其电催化性能[J]. 储能科学与技术, 2021, 10(6): 2028-2038. |
[3] | 苏秀丽, 廖文俊, 李严. 分步法电解水制氢的机遇与挑战[J]. 储能科学与技术, 2021, 10(1): 87-95. |
[4] | 罗红斌,邓林旺,薛程升,李多辉,冯天宇,王 超,邹德天. SiC特性分析仿真及其在移动储能电站的应用[J]. 储能科学与技术, 2017, 6(5): 1105-1113. |
[5] | 童金辉, 熊思醒, 周印华. 有机叠层太阳能电池的研究进展[J]. 储能科学与技术, 2014, 3(6): 590-596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||