[1] Phuangpornpitak N,Tia S. Opportunities and challenges of integrating renewable energy in smart grid system[J]. Energy Procedia ,2013,34:282-290. [2] Medrano M,Gil A,Martorell I,Potau X,Cabeza L F. State of the art on high temperature thermal energy storage for power generation. Part 2—Case studies[J]. Renewable and Sustainable Energy Reviews ,2010,14(1):56-72. [3] Wu Yuting(吴玉庭),Ren Nan(任楠),Ma Chongfang(马重芳). Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(6):586-592. [4] Belen Z,Jose M M,Luisa F C, et al . Review on thermal energy storage with phase change:Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering ,2003,23:251-283. [5] Gil A,Medrano M,Martorell I, et al. State of the art on high temperature thermal energy storage for power generation. Part 1— Concepts, materials and modelisation[J]. Renewable and Sustainable Energy Reviews ,2010,14(1):31-55. [6] Funken K H. Solar chemistry:Classification, criteria and identification of R&D deficits[J]. Solar Energy Materials ,1991,24(1/4):370-385. [7] Wentworth W E,Chen E. Simple thermal decomposition reactions for storage of solar thermal energy[J]. Solar Energy ,1976,18:205-214. [8] Bao Z W,Zhang Z X. Research progress of high temperature thermochemical heat storage technologies[C]//The Third China Energy Scientist Forum. Beijing,2011. [9] Pardo P,Deydier A,Anxionnaz-Minvielle Z,Rougé S,Cabassud M,Cognet P. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews ,2014,32:591-610. [10] Paskevicius M,Sheppard D A,Buckley C E. Thermodynamics changes in mechanochemically synthesized magnesium hydride nanoparticles[J]. Journal of the American Chemical Society ,2010,132:5077-5083. [11] Reiser A,Bogdanović B,Schlichte K. The application of Mg-based metal-hydrides as heat energy[J]. International Journal of Hydrogen Energy ,2000,25(5):425-430. [12] Felderhoff M,Bogdanović B. Review:High temperature metal hydrides as heat storage materials for solar and related applications[J]. International Journal of Molecular Sciences ,2009,10(1):325-344. [13] Gu Qingzhi(顾清之). Numerical simulation and experimental study of magnesium-magenesium hydride themochemical heat storage system[D]. Shanghai:Shanghai Jiao Tong University,2013. [14] Bogdanović B,Hartwig T H,Spielthoff B. The development, testing and optimization of energy storage materials based on the MgH 2 -Mg system[J]. International Journal of Hydrogen Energy ,1993,18(7):575-589. [15] Bogdanović B,Ritter A,Spielthoff B,Straβburger K. A process steam generator based on the high temperature magnesium hydride/magnesium heat storage system[J]. International Journal of Hydrogen Energy ,1995,20(10):811-822. [16] Bogdanović B,Ritter A,Spielthoff B. Active MgH 2 -Mg systems for reversible chemical energy storage[J]. Angewandte Chemie International Edition in English ,1990,29(3):223-328. [17] Sheppard D A,Paskevicius M,Buckley C E. Thermodynamics of hydrogen desorption from NaMgH 3 and its application as a solar heat storage medium[J]. Chemistry of Materials ,2011,23(19):4298-4300. [18] Harries D N,Paskevicius M,Sheppard D, et al . Concentrating solar thermal heat storage using metal hydrides[J]. Proceedings of the IEEE ,2012,100(2):539-549. [19] Fahim M A,Ford J D. Energy storage using the BaO 2 -BaO reaction cycle[J]. Chemical Engineering Journal ,1983,27:21-28. [20] Wong B,Brown L,Schaube F,Tamme R,Sattler C. Oxide based thermochemical heat storage[C]// Solar PACES. Perpignan,2010. [21] Buckingham R,Wong B,Brown L,Sattler C,Schaub F,Wörner A. Metal oxide based thermochemical energy storage for concentrated solar power-thermodynamics and parasitic loads for packed bed reactors[C]// Solar PACES. Granada,2011. [22] Neises M,Tescari S,De Oliveira L,Roeb M,Sattler C,Wong B. Solar-heated rotary kiln for thermochemical energy storage[J]. Solar Energy ,2012,86:3040-3048. [23] Armstrong A R,Bruce P G. Synthesis of layered LiMnO 2 as an electrode for rechargeable lithium batteries[J]. Nature ,1996,381:499-500. [24] Carrillo A J,Moya J,Bayón A, et al . Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides:Pure oxides versus mixed ones[J]. Solar Energy Materials and Solar Cells ,2014,123:47-57. [25] Block T,Knoblauch N,Schmücker M. The cobalt-oxide/iron-oxide binary system for use as high temperature thermochemical energy storage material[J]. Thermochimica Acta ,2014,577:25-32. [26] Agrafiotis C,Storch H,Roeb M,Sattler C. Solar thermal reforming of methane feedstocks for hydrogen and syngas production:A review[J] Renewable and Sustainable Energy Reviews ,2014,29:656-682. [27] Kugeler K,Niessen H F,Röth-Kamat M. Transport of nuclear heat by means of chemical energy (nuclear long distance energy)[J]. Nuclear Engineering and Design ,1975,34:65-72. [28] Fedders H,Harth R,Höhlein B. Experiments for combing nuclear heat with the methane steam-reforming process[J]. Nuclear Engineering and Design ,1975,34:119-127. [29] Levitan R,Levy M,Rosin R,Rubin R. Closed loop operation of a solar chemical heat pipe at the Weizmann Institute solar furnace[J]. Solar Energy Materials ,1991,24(1):464-477. [30] Buck R,Muir J F,Hogan R E. Carbon dioxide reforming of methane in a solar volumetric receiver/reactor:The CAESAR project[C]//5th Int. IEA Symposium on Solar High Temperature Technologies. Davos,Switzerland,1990. [31] Kirillov V A. Catalyst application in solar thermochemistry[J]. Solar Energy ,1999,66(2):143-149. [32] Davey R,Stein W. Radiation nation[J]. Solar Energy ,2006,80:23-24. [33] Solymosi F,Kutsan G,Erdohelyi A. Catalytic reaction of CH 4 with CO 2 over alumina-suppotred Pt metals[J]. Catalysis Letters ,1991,11(2):149-156. [34] Józwiak W K,Nowosielska M,Rynkowski J. Reforming of methane with carbon dioxide over supported bimetallic catalysts containing Ni and noble metal:Characterization and activity of SiO 2 supported Ni-Rh catalysts[J]. Applied Catalysis A : General ,2005,280(2):233-244. [35] Huang T,Huang W,Huang J, et al . Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts[J]. Fuel Processing Technology ,2011,92(10):1868-1875. [36] Huang J,Ma R X,Huang T,Zhang A R,Huang W. Carbon dioxide reforming of methane over Ni/Mo/SBA-15-La 2 O 3 catalyst:Its characterization and catalytic performance[J]. Journal of Natural Gas Chemistry ,2011,20(5):465-470. [37] Ervin G. Solar heat storage using chemical reactions[J]. Journal of Solid State Chemistry ,1977,22:51-61. [38] Azpiazu M N,Morquillas J M,Vasquez A. Heat recovery from a thermal energy storage based on the Ca(OH) 2 /CaO cycle[J]. Applied Thermal Engineering ,2003,23:733-741. [39] Brown D R,Lamarche J L,Spanner G E. Chemical energy storage system for SEGS solar thermal plant[R]. Batelle,1991. [40] Schaube F,Wörner A,Tamme R. High temperature thermochemical heat storage for CSP using gas-solid reaction[C]//Solar PACES. Perpignan,2010. [41] Schaube F,Wörner A,Tamme R. High temperature thermochemical heat storage for concentrated solar power using gas-solid reaction[J]. Journal of Solar Energy Engineering ,2011,133(3):1006-1012. [42] Schaube F,Koch L,Wörner A, et al . A thermodynamic and kinetic study of the de- and rehydration of Ca(OH) 2 at high H 2 O partial pressures for thermochemical heat storage[J]. Thermochimica Acta ,2012,538(20):9-20. [43] Schaube F,Kohzer A,Schütz J,Wörner A,Müller-Steinhagen H. De- and rehydration of Ca(OH) 2 in a reactor with direct heat transfer for thermochemical heat storage. Part A:Experimental results[J]. Chemical Engineering Research and Design ,2013,91(5):856-864. [44] Schaube F,Kohzer A,Schütz J,Wörner A,Müller-Steinhagen H. De- and rehydration of Ca(OH) 2 in a reactor with direct heat transfer for thermochemical heat storage. Part B:Validation model[J]. Chemical Engineering Research and Design ,2013,91(5):865-873. [45] Darkwa K. Thermochemical energy storage in inorganic oxides:An experimental evaluation[J]. Applied Thermal Engineering ,1998,18(6):387-400. [46] Kreetz H,Lovegeove K. Theoretical analysis and experimental results of a 1 kW chem ammonia synthesis reactor for a solar thermo chemical energy storage system[J]. Solar Energy ,1999,67(4-6):287-296. [47] Kreetz H,Lovegrove K. Exergy analysis of an ammonia synthesis reactor in a solar thermochemical power system[J]. Solar Energy ,2002,73(3):187-194. [48] Lovegrove K,Luzzi A,Soldiani I,Kreetz H. Developing ammonia based thermochemical energy storage for dish power plants[J]. Solar Energy ,2004,76:331-337. [49] Luzzi A,Lovegeove K. Techno-economic analysis of a 10 MW solar thermal power plant using ammonia-based thermochemical energy storage[J]. Solar Energy ,1999,66(2):91-101. [50] Lovegrove K,Burgess G,Pye J. A new 500 m 2 paraboloidal dish solar concentrator[J]. Solar Energy ,2011,85:620-626. [51] Liao Kui(廖葵). Applied basic research on solar thermal power generation with ammonia-based thermochemical enery storage[D]. Guangzhou:South China University of Technology,2008. |