[1] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article:MXenes:A new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7):992-1005.
[2] 谢丹艳, 张燕, 陈江, 等. 二维过渡金属碳化物或碳氮化物在储能领域的应用进展[J]. 化工新型材料, 2017(10):23-25. XIE Y D, ZHANG Y, CHEN J, et al. Overview on application of two dimension MXene in energy storage[J]. New Chemical Materials, 2017(10):23-25.
[3] NAGUIB M, PRESSER V, TALLMAN D, et al. On the topotactic transformation of Ti2AlC into a Ti-C-O-F cubic phase by heating in molten lithium fluoride in air[J]. Journal of the American Ceramic Society, 2011, 94(12):4556-4561.
[4] NAGUIB M, KURTOGLU M, GOGOTSI Y, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37):4248-4253.
[5] LUKATSKAYA M. R, MASHTALIR O, GOGOTSI Y, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153):1502-1505.
[6] 李正阳. 二维碳化物晶体MXene的制备及其电化学性能研究[D]. 焦作:河南理工大学, 2014. LI Z Y. Preparation and electrochemical performance of two-dimensional carbide crystals MXene[D]. Jiaozuo:Henan Polytechnic University, 2014.
[7] ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Materials, 2015, 27(2):339-45.
[8] LIN Z, BARBARA D, TABERNA P L, et al. Capacitance of Ti3C2Tx, MXene in ionic liquid electrolyte[J]. Journal of Power Sources, 2016, 326:575-579.
[9] FU Q, WANG X, ZHANG N, et al. Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor[J]. Journal of Colloid and Interface Science, 2017, 511:128-134.
[10] ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Materials, 2015, 27(2):339-345.
[11] HU M, LI Z, ZHANG H, et al. Self-assembled Ti3C2TxMXene film with high gravimetric capacitance[J]. Chemical Communications, 2015, 51(70):13531-13533.
[12] 苏香香, 杨蓉, 李兰, 等. 氮掺杂石墨烯的制备及其在化学储能中的研究进展[J]. 应用化学, 2018, 35(2):137-146. SU X X, YANG R, LI L, et al. Research progress of preparation of nitrogen-doped graphene and its application in chemical energy storage[J]. Chinese Journal of Applied Chemistry, 2018, 35(2):137-146.
[13] 陆赞. 杂原子掺杂的碳纳米材料的合成及电化学应用[D]. 苏州:苏州科技大学, 2017. LU Z. The synthesis of heteroatom-doped carbon nanomaterials and applications of their electrochemical[D]. Suzhou:Suzhou University of Science and Technology, 2017.
[14] ZHAO Y, HU C, HU Y, et al. A versatile, ultralight, nitrogen-doped graphene framework[J]. Angewandte Chemie International Edition, 2012, 51(45):11371-11375.
[15] 杨倩. 基于离子液体的氮掺杂碳点的制备及其在Hg2+检测中的应用[D]. 新乡:河南师范大学, 2017. YANG Q. Synthesis of nitrogen doped carbon dots based on ionic liquids and their application in detection of Hg2+[D]. Xinxiang:Henan Normal University, 2017.
[16] 刘超. 氮掺杂多孔碳材料的合成及其应用研究[D]. 天津:天津大学, 2013. LIU C. Study on the synthesis and application of N-doped porous carbon materials[D]. Tianjin:Tianjin University, 2013.
[17] 郭彬彬, 文豪, 康文彬, 等. 自支撑氮掺杂石墨烯纸柔性电极的制备及其储锂性能的研究[J]. 材料导报:纳米与新材料专辑, 2017(1):292-296. GUO B B, WEN H, KANG W B, et al. Preparation of free-standing flexible N-doped graphene paper electrode and the studyof its lithium storage properties[J]. Materials Review, 2017(1):292-296.
[18] 张祥兰. 基于聚苯胺(PANI)的多级氮掺杂碳复合材料的合成与应用研究[D]. 郑州:郑州大学, 2016. ZHANG X L. Synthesis and application of hierarchical nitrogen-doped carbon composites from polyaniline[D]. Zhengzhou:Zhengzhou University, 2016.
[19] 李卫. 氮掺杂石墨烯的制备及其电化学性能研究[D]. 昆明:云南大学, 2016. LI W. Preparation and electrochemical performance of nitrogen doped graphene[D]. Kunming:Yunnan University, 2016.
[20] 徐燕军, 柳学全. B掺杂金刚石电极的制备、特性及其表面改性技术[J]. 粉末冶金工业, 2018, 28(3):1-7. XU Y J, LIU X Q. Preparation and properties of boron-doped diamond electrode and its surface modification strategies[J]. Powder Metallurgy Industry, 2018, 28(3):1-7.
[21] 姚元英, 邵立冬, 王娟, 等. 硼掺杂碳纳米管负载纳米Pd的甲酸电氧化性能[J]. 应用化工, 2016, 45(11):2196-2200. YAO Y Y, SHAO L D, WANG J, et al. Nanosizing Pd on boron-doped carbon nanotubes for enhanced formic acid oxidation performance[J]. Applied Chemical Industry, 2016, 45(11):2196-2200.
[22] 王维宙. 二维层状Ti3C2Tx材料的制备及其电容性能研究[D]. 哈尔滨:哈尔滨工业大学, 2016. WANG W Y. Study on preparation of two-dimensional layered Ti3C2Tx material and its capacitance properties[D]. Haerbin:Harbin Institute of Technology.
[23] XI J, XIE C, YAN Z, et al. Pd nanoparticles decorated N-doped graphene quantum dots@N-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection[J]. ACS Applied Materials & Interfaces, 2016, 8(34):22563-22573.
[24] XI J, WANG Q, LIU J, et al. N,P-dual-doped multilayer graphene as an efficient carbocatalyst for nitroarene reduction:A mechanistic study of metal-free catalysis[J]. Journal of Catalysis, 2018, 359:233-241.
[25] XIAO J, ZHAO C, HU C, et al. Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst[J]. Journal of Power Sources, 2017, 348:183-192.
[26] CHEN P, YANG J J, LI S S, et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy, 2013, 2(2):249-256.
[27] ZHANG L L, ZHAO X, STOLLER M D, et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors[J]. Nano Letters, 2012, 12(4):1806-1812.
[28] HAO L, LI X, ZHI L, et al. Carbonaceous electrode materials for supercapacitors[J]. Advanced Materials, 2013, 25(28):3899-3904. |