| 1 | XIONG R. Battery Management algorithm for electric vehicles[M]. Singapore: Springer, 2020. | 
																													
																						| 2 | PLACKE T, KLOEPSCH R, DÜHNEN S, et al. Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density[J]. Journal of Solid State Electrochemistry, 2017, 21(7): 1939-1964. | 
																													
																						| 3 | TARASCON J M, ARMAND M. Materials for sustainable energy: Issues and challenges facing rechargeable lithium batteries[M]. UK: Nature Publishing Group, 2011: 171-179. | 
																													
																						| 4 | SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. | 
																													
																						| 5 | TANG X, ZOU C, WIK T, et al. Run-to-run control for active balancing of lithium iron phosphate battery packs[J]. IEEE Transactions on Power Electronics, 2019, 35(2): 1499-1512. | 
																													
																						| 6 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): doi: 10.1149/1.2113792. | 
																													
																						| 7 | 姬芬竹, 刘丽君, 杨世春, 等. 电动汽车动力电池生热模型和散热特性[J]. 北京航空航天大学学报, 2014, 40(1): 18-24. | 
																													
																						|  | JI Fenzhu, LIU Lijun, YANG Shichun, et al. Heat generation model and heat dissipation characteristics of electric vehicle power battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(1): 18-24. | 
																													
																						| 8 | 张志杰, 李茂德. 锂离子电池内阻变化对电池温升影响分析[J]. 电源技术, 2010, 34(2): 128-130. | 
																													
																						|  | ZHANG Zhijie, LI Maode. Analysis of the influence of internal resistance change on the temperature rise of lithium ion battery[J]. Chinese Journal of Power Sources, 2010, 34(2): 128-130. | 
																													
																						| 9 | YANG N, FU Y, YUE H, et al. An improved semi-empirical model for thermal analysis of lithium-ion batteries[J]. Electrochimica Acta, 2019, 311: 8-20. | 
																													
																						| 10 | XIE Y, HE X, HU X, et al. An improved resistance-based thermal model for a pouch lithium-ion battery considering heat generation of posts[J]. Applied Thermal Engineering, 2020, 164: doi: 10.1016/j.applthermaleng.2020.115794. | 
																													
																						| 11 | WANG Q, JIANG B, XUE Q F, et al. Experimental investigation on EV battery cooling and heating by heat pipes[J]. Applied Thermal Engineering, 2015, 88: 54-60. | 
																													
																						| 12 | HUANG Q, LI X, ZHANG G, et al. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system[J]. Applied Thermal Engineering, 2018, 141: 1092-1100. | 
																													
																						| 13 | DENG S, LI K, XIE Y, et al. Heat pipe thermal management based on high-rate discharge and pulse cycle tests for lithium-ion batteries[J]. Energies, 2019, 12(16): doi: 10.3390/en12163143. | 
																													
																						| 14 | NELSON P, DEES D, AMINE K, et al. Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources, 2002, 110(2): 349-356. | 
																													
																						| 15 | HAN X, HUANG Y, LAI H. Electrochemical-thermal coupled investigation of lithium iron phosphate cell performances under air-cooled conditions[J]. Applied Thermal Engineering, 2019, 147: 908-916. | 
																													
																						| 16 | THOMAS K E, NEWMAN J. Thermal modeling of porous insertion electrodes[J]. Journal of the Electrochemical Society, 2003, 150(2): doi: 10.1149/1.1531194. | 
																													
																						| 17 | LI J, SUN D, JIN X, et al. Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation[J]. Applied Energy, 2019, 254: doi: 10.1016/j.apenergy.2019.113574. | 
																													
																						| 18 | WANG S L, TANG W, FERNANDEZ C, et al. A novel endurance prediction method of series connected lithium-ion batteries based on the voltage change rate and iterative calculation[J]. Journal of Cleaner Production, 2019, 210: 43-54. | 
																													
																						| 19 | 郭宏榆, 姜久春, 王吉松, 等.功率型锂离子动力电池的内阻特性[J].北京交通大学学报, 2011, 35(5): 119-123. | 
																													
																						|  | GUO H, JIANG J, WANG J, et al. Characteristic on internal resistance of lithium-ion power battery[J]. Journal of Beijing Jiaotong University, 2011, 35(5): 119-123. | 
																													
																						| 20 | LOU T T, ZHANG W G, GUO H Y, et al. The internal resistance characteristics of lithium-ion battery based on HPPC method[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2012, 455: 246-251. |