1 |
LI B, BEI S Y. Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter[J]. Neural Computing and Applications, 2019, 31(12): 8171-8183.
|
2 |
罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时, 积分SOC估算方法研究[J]. 汽车工程, 2020, 42(5): 681-687.
|
|
LUO Y, QI P W, HUANG H, et al. Study on battery SOC estimation by ampere-hour integral method with capacity correction[J]. Automotive Engineering, 2020, 42(5): 681-687.
|
3 |
ALEJANDRO G, ERIK S, DANIEL-IOAN S. Recursive state of charge and state of health estimation method for lithium-ion batteries based on coulomb counting and open circuit voltage[J]. Energies, 2020, 13(7): doi: 10.3390/en13071811.
|
4 |
LI M H. Li-ion dynamics and state of charge estimation[J]. Renewable Energy, 2017, 100: 44-52.
|
5 |
苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络的动力电池SOC估算方法[J]. 储能科学与技术, 2019, 8(5): 868-873.
|
|
SU Z H, LI X J, QIN J, et al. SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873.
|
6 |
GAO J R, REN G J, LIN Y, et al. SOC Estimation of mine power supply based on improved BP neural network algorithm[J]. IOP Conference Series: Earth and Environmental Science, 2020, 526(1): doi: 10.1088/1755-1315/526/1/012112.
|
7 |
盛瀚民, 肖建, 贾俊波, 等. 最小二乘支持向量机荷电状态估计方法[J]. 太阳能学报, 2015, 36(6): 1453-1458.
|
|
SHENG H M, XIAO J, JIA J B, et al. Estimation method for state of charge based on least square support vector machine[J]. Acta Energiae Solaris Sinica, 2015, 36(6): 1453-1458.
|
8 |
李昌, 罗国阳. 结合支持向量机的卡尔曼预测算法在VRLA蓄电池状态监测中的应用[J]. 电工技术学报, 2011, 26(11): 168-174.
|
|
LI C, LUO G Y. Application of Kalman prediction algorithm combined with SVM in monitoring states of VRLA battery[J]. Transactions of China Electrotechnical Society, 2011, 26(11): 168-174.
|
9 |
宫明辉, 乌江, 焦朝勇. 基于模糊自适应扩展卡尔曼滤波器的锂电池SOC估算方法[J]. 电工技术学报, 2020, 35(18): 3972-3978.
|
|
GONG M H, WU J, JIAO C Y. SOC estimation method of lithium battery based on fuzzy adaptive extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3972-3978.
|
10 |
YANG F F, ZHANG S H, LI W H, et al. State-of-charge estimation of lithium-ion batteries using LSTM and UKF[J]. Energy, 2020, 201: doi: 10.1016/j.energy.2020.117664.
|
11 |
陈德海, 王超, 朱正坤, 等. 交互多模型无迹卡尔曼滤波算法预测锂电池SOC[J]. 储能科学与技术, 2020, 9(1): 257-265.
|
|
CHEN D H, WANG C, ZHU Z K, et al. Lithium battery state-of-charge estimation based on interactive multi-model unscented Kalman filter algorithm[J]. Energy Storage Science and Technology, 2020, 9(1): 257-265.
|
12 |
杨峰, 郑丽涛, 王家琦, 等. 双层无迹卡尔曼滤波[J]. 自动化学报, 2019, 45(7): 1386-1391.
|
|
YANG F, ZHENG L T, WANG J Q, et al. Double layer unscented Kalman filter[J]. Acta Automatica Sinica, 2019, 45(7): 1386-1391.
|
13 |
曹铭, 张越, 黄菊花. 基于RLS法的锂离子电池离线参数辨识[J]. 电池, 2020, 50(3): 228-231.
|
|
CAO M, ZHANG Y, HUANG J H. Offline parameter identification of Li-ion battery based on RLS method[J]. Battery Bimonthly, 2020, 50(3): 228-231.
|
14 |
谢晨雪. 用于直流微电网的串联锂离子电池SOC在线估计[D]. 西安: 西安理工大学, 2020.
|
|
XIE Chenxue. Online estimation of series connected lithium-ion batteries in DC microgrid[D]. Xi'an: Xi'an University of Technology, 2020.
|