储能科学与技术 ›› 2022, Vol. 11 ›› Issue (10): 3306-3315.doi: 10.19799/j.cnki.2095-4239.2022.0188

• 储能测试与评价 • 上一篇    下一篇

基于Douglas-Peucker融合闵式距离的锂电池健康因子提取及SOH预测

陈万利(), 张梅(), 冯涛   

  1. 安徽理工大学,安徽 淮南 232001
  • 收稿日期:2022-04-05 修回日期:2022-04-12 出版日期:2022-10-05 发布日期:2022-10-10
  • 通讯作者: 张梅 E-mail:cwl18815213451@qq.com;149660072@qq.com
  • 作者简介:陈万利(1996—)男,硕士研究生,从事电池SOH及RUL、智能算法研究,E-mail:cwl18815213451@qq.com
  • 基金资助:
    安徽高校自然科学研究项目(KJ2020A0309);国家自然科学基金项目(51874010)

The health factor extraction and SOH prediction of lithium battery based on douglas-peucker fusion minkowski distance

Wanli CHEN(), Mei ZHANG(), Tao FENG   

  1. Anhui University of Science & Technology, Huainan 232001, Anhui, China
  • Received:2022-04-05 Revised:2022-04-12 Online:2022-10-05 Published:2022-10-10
  • Contact: Mei ZHANG E-mail:cwl18815213451@qq.com;149660072@qq.com

摘要:

针对锂离子电池的健康因子提取困难而导致电池健康状况(state of health,SOH)预测精度低的问题,提出一种基于Douglas-Peucker融合闵式距离的锂电池健康因子特征提取算法,并利用该算法对恒流恒压充电恒功率放电策略下的电池数据进行特征提取,进而实现对锂电池的SOH预测。首先对测量的实验数据建立特征工程,利用闵式距离建立评价指标,实现基于Douglas-Peucker算法的电池健康因子提取,进而得到34维健康因子。然后,针对所提取的健康因子,利用差分变异头脑风暴(difference-mutation brainstorm optimization,DBSO)算法进行寻优,剔除不相关和冗余的特征,避免模型过拟合,提高模型性能。最后,利用支持向量机(support vector machines,SVM)及其优化模型对所提取的健康因子进行电池SOH预测。实验结果表明,所建立的特征工程提取的健康因子在SVM各模型中拟合优度均超过0.96,其中DBSO-SVM模型的预测精度最高,预测效果最好,平均绝对值误差(mean square error,MSE)值低于3。结合不同充放电策略,将所提出的特征提取算法在NASA数据上验证。结果表明,在SVM模型上,电池B0005、B0006、B0007的拟合优度达到0.99,均方根误差(root mean square error,RMSE)值均低于6%。对比多种优化算法,DBSO-SVM模型的性能最好。

关键词: Douglas-Peucker算法, SOH, 闵式距离, DBSO算法, SVM模型

Abstract:

To solve the problem of the low prediction accuracy of state of health (SOH) caused by the difficulty in extracting health factors of lithium-ion batteries, a feature-extraction algorithm of lithium-ion battery health factors based on the Douglas-Peucker fusion Min distance is proposed. The algorithm is used to extract the battery data feature under constant current and voltage charging, as well as constant power discharge strategies, to realize the SOH prediction of lithium batteries. First, the characteristic engineering is established for the measured experimental data, and the evaluation index is established using the Min distance. The battery health factor is extracted based on the Douglas-Peucker algorithm, and then the 34-dimensional health factor is obtained. For the extracted health factors, DBSO (difference-mutation brainstorm optimization) algorithm is used for optimization to eliminate irrelevant and redundant features, avoid overfitting of the model and improve model performance. Finally, the SVM (support vector machines) and its optimization model were used to predict the SOH of the battery. The experimental results show that the goodness of fit of the health factors extracted using feature engineering is greater than 0.96 in each SVM model. The DBSO-SVM model has the highest prediction accuracy and the best prediction effect, and the MSE (mean square error) value is less than 3. The proposed feature-extraction algorithm is verified on NASA data using different charging and discharging strategies; the results show that on the SVM model, the goodness of fit of B0005, B0006, and B0007 reaches 0.99, and the RMSE (root mean square error) values are lower than 6%. Compared with the various optimization algorithms, the DBSO-SVM model demonstrated the best performance.

Key words: douglas-peucker algorithm, SOH, minkowski distance, DBSO algorithm, SVM model

中图分类号: