1 |
O'GRADY C. Gravity Powers batteries for renewable energy[J]. Science, 2021, 372(6541): 446.
|
2 |
FRANKLIN M, FRAENKEL P. Gravity-based energy storage system: US20220228572[P]. 2022-07-21.
|
3 |
肖立业, 史黎明, 韦统振, 等. 铁路轨道运载车辆储能系统: CN108437808A[P]. 2018-08-24.
|
|
XIAO L Y, SHI L M, WEI T Z, et al. Railway track carrier vehicle energy storage system: CN108437808A[P]. 2018-08-24.
|
4 |
邱清泉, 肖立业, 聂子攀, 等. 一种基于多重物高效提升和转移的重力储能系统: CN114151296A[P]. 2022-03-08.
|
|
QIU Q Q, XIAO L Y, NIE Z P, et al. Gravity energy storage system based on efficient lifting and transferring of multiple heavy objects: CN114151296A[P]. 2022-03-08.
|
5 |
BERRADA A, LOUDIYI K, GARDE R. Dynamic modeling of gravity energy storage coupled with a PV energy plant[J]. Energy, 2017, 134: 323-335.
|
6 |
BOTHA C D, KAMPER M J. Linear electric machine-based gravity energy storage for wind farm integration[C]//2020 International SAUPEC/RobMech/PRASA Conference. Cape Town, South Africa:IEEE 2020: 1-6.
|
7 |
柴源. 基于改进鲸鱼算法的风-光-重力储能系统优化配置研究[D]. 西安: 西安理工大学, 2021.
|
|
CHAI Y. Study on optimal configuration of wind power-photovoltaic-gravity energy storage system based on improved whale algorithm[D]. Xi'an: Xi'an University of Technology, 2021.
|
8 |
曾蓉. 山体储能技术及其与风电场联合出力的容量配置研究[D]. 长沙: 长沙理工大学, 2016.
|
|
ZENG R. Research on mountain energy technology and its capacity configuration with wind farm[D]. Changsha: Changsha University of Science & Technology, 2016.
|
9 |
RUFER A. Design and control of a KE (kinetic energy)-compensated gravitational energy storage system[C]//2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe). Lyon, France: IEEE, 2020 : 1-11.
|
10 |
YANGYANG C, HOU H, XU T, et al. A new gravity energy storage operation mode to accommodate renewable energy[C]//2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference. Macao, China: IEEE, 2019 : 1-5.
|
11 |
薛志恒, 赵杰, 王伟锋, 等. 一种新能源发电结合电池及重力储能的系统及方法: CN113315158A[P]. 2021-08-27.
|
|
XUE Z H, ZHAO J, WANG W F, et al. System and method for combining new energy power generation with battery and gravity energy storage: CN113315158A[P]. 2021-08-27.
|
12 |
LI X J, PALAZZOLO A. A review of flywheel energy storage systems: State of the art and opportunities[J]. Journal of Energy Storage, 2022, 46: doi:10.1016/j.est.2021.103576.
|
13 |
陈玉龙. 应用于风电场的飞轮储能系统充放电控制研究[D]. 北京: 华北电力大学(北京), 2021.
|
|
CHEN Y L. Study on charging and discharging control of flywheel energy storage system applied in wind farm[D]. Beijing: North China Electric Power University, 2021.
|
14 |
陈斌, 范林源, 张俊武, 等. 基于飞轮储能装置的双馈风电机组并网系统联合调频控制研究[J]. 电工技术, 2018(12): 71-73, 76.
|
|
CHEN B, FAN L Y, ZHANG J W, et al. Research on joint frequency modulation control of the grid-connected system for DFIG based on flywheel energy storage device[J]. Electric Engineering, 2018(12): 71-73, 76.
|
15 |
张馨文. 基于飞轮储能技术的双馈风电机组并网调频控制研究[D]. 南京: 南京理工大学, 2020.
|
|
ZHANG X W. Research on grid-connected frequency control of doubly-fed wind turbines based on flywheel energy storage technology[D]. Nanjing: Nanjing University of Science and Technology, 2020.
|
16 |
梁琼文. 永磁同步电机低速平稳控制的研究[D]. 合肥: 中国科学技术大学, 2020.
|
|
LIANG Q W. Study on the steady control of permanent magnet synchronous motor at low-speed[D]. Hefei: University of Science and Technology of China, 2020.
|
17 |
李长磊. 永磁同步电机低速控制研究[D]. 合肥: 中国科学技术大学, 2016.
|
|
LI C L. Study on permanent magnet synchronous motor control at low-speed[D]. Hefei: University of Science and Technology of China, 2016.
|
18 |
纪秉男. 低速大转矩永磁同步电机速度控制策略研究[D]. 天津: 天津大学, 2015.
|
|
JI B N. Research on speed control strategy of low speed high torque permanent magnet synchronous motor[D]. Tianjin: Tianjin University, 2015.
|
19 |
武雁. 基于DSP的7.5 kW背靠背变流器控制系统的研究与实现[D]. 北京: 北京工业大学, 2014.
|
|
WU Y. Research and realization on7.5 kw back-to-back converter control system based on DSP[D]. Beijing: Beijing University of Technology, 2014.
|
20 |
王其铭. 低速大转矩永磁同步电机控制方法研究[D]. 长春: 长春工业大学, 2022.
|
|
WANG Q M. Research on control method of low-speed and high-torque permanent magnet synchronous motor[D]. Changchun: Changchun University of Technology, 2022.
|
21 |
吴昊. 电气化铁路再生制动能量回馈系统控制技术研究[D]. 成都: 西南交通大学, 2017.
|
|
WU H. Research on control technology of regenerative braking energy feedback system for electrical ralways[D]. Chengdu: Southwest Jiaotong University, 2017.
|
22 |
EMRANI A, BERRADA A, BAKHOUYA M. Modeling and performance evaluation of the dynamic behavior of gravity energy storage with a wire rope hoisting system[J]. Journal of Energy Storage, 2021, 33: doi:10.1016/j.est.2020.102154.
|
23 |
宋兆鑫. 飞轮储能系统并网控制方法研究[D]. 北京: 华北电力大学, 2019.
|
|
SONG Z X. Research on grid-connected control method for flywheel energy storage system[D]. Beijing: North China Electric Power University, 2019.
|
24 |
欧跃雄. 飞轮储能系统控制策略研究[D]. 长沙: 长沙理工大学, 2016.
|
|
OU Y X. Control strategy of flywheel energy storage systems[D]. Changsha: Changsha University of Science & Technology, 2016.
|
25 |
刘文军, 唐西胜, 周龙, 等. 基于背靠背双PWM变流器的飞轮储能系统并网控制方法研究[J]. 电工技术学报, 2015, 30(16): 120-128.
|
|
LIU W J, TANG X S, ZHOU L, et al. Research on grid-connected control method for FESS based on back-to-back converter[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 120-128.
|
26 |
戴兴建, 姜新建, 王秋楠, 等. 1 MW/60 MJ飞轮储能系统设计与实验研究[J]. 电工技术学报, 2017, 32(21): 169-175.
|
|
DAI X J, JIANG X J, WANG Q N, et al. The design and testing of a 1 MW/60 MJ flywheel energy storage power system[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 169-175.
|
27 |
邢向上, 姜新建. 飞轮储能系统电机及其控制器概述[J]. 储能科学与技术, 2015, 4(2): 147-152.
|
|
XING X S, JIANG X J. Introduction to motors and controllers of flywheel energy storage systems[J]. Energy Storage Science and Technology, 2015, 4(2): 147-152.
|
28 |
张霞. 基于背靠背变流器的并网控制研究[J]. 通信电源技术, 2016, 33(4): 12-14.
|
|
ZHANG X. Research on grid-connected control method for back-to-back converter[J]. Telecom Power Technology, 2016, 33(4): 12-14.
|