储能科学与技术 ›› 2022, Vol. 11 ›› Issue (8): 2612-2619.doi: 10.19799/j.cnki.2095-4239.2022.0261

• 电化学储能安全专刊 • 上一篇    下一篇

绝缘油浸没式冷却小型NCM811动力电池模组的温度场特性实验

张进强1(), 王海民1,2(), 鲁南1   

  1. 1.上海理工大学能源与动力工程学院
    2.上海市动力工程多相流动与传热重点实验室,上海 200093
  • 收稿日期:2022-05-16 修回日期:2022-06-02 出版日期:2022-08-05 发布日期:2022-08-03
  • 通讯作者: 王海民 E-mail:zjq12136@163.com;hmwang@usst.edu.cn
  • 作者简介:张进强(1995—),男,硕士研究生,研究方向为动力电池热电特性测试评价,E-mail:zjq12136@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFB0104400)

Temperature field characteristics of a small NCM811 traction battery module cooled by insulating oil immersion

Jingqiang ZHANG1(), Haimin WANG1,2(), Nan LU1   

  1. 1.School of Energy and Power Engineering, University of Shanghai for Science and Technology
    2.Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
  • Received:2022-05-16 Revised:2022-06-02 Online:2022-08-05 Published:2022-08-03
  • Contact: Haimin WANG E-mail:zjq12136@163.com;hmwang@usst.edu.cn

摘要:

锂离子电池因具有比能量密度大、放电功率高及生产工艺成熟等优势已成为电动汽车的主要储能单元。但是锂离子电池在充放电过程中会产生大量热,严重影响其运行安全和使用寿命。因此在锂离子电池运行过程中加入热管理系统,对于提高锂离子电池模组运行过程中安全性和使用寿命有重要作用。本工作以21700容量型NCM811锂离子动力电池模组为研究对象,通过实验研究了在不同充放电倍率下,绝缘油浸没式冷却系统在绝缘油静态冷却条件下的油浸没量(VR = 0.2、0.5和1)、环境温度(15 ℃、20 ℃、25 ℃和30 ℃)以及绝缘油动态冷却条件下油浸没量(VR = 0.2、0.5和1)、流量(3 mL/s、6 mL/s、9 mL/s和12 mL/s)和进出口位置变化对于电池模组温升特性的影响。结果表明,绝缘油浸没式冷却系统的应用对于降低模组最高温度及提高模组温度均匀性效果明显,在绝缘油静态冷却条件下,随着油浸没量增加,热管理效果提升明显,同时热管理效果对于环境温度变化十分敏感;在绝缘油动态冷却条件下,随着油浸没量和流量的增加,以及进出口方式的改变,电池模组热管理效果同样明显提升。

关键词: 浸没式冷却, 电池热管理, 最高温度, 温度均匀性

Abstract:

Lithium-ion batteries have become the main energy storage unit of electric vehicles due to their advantages of high specific energy density, high discharge power, and mature production technology. However, the lithium-ion battery generates much heat during the charging and discharging process, which seriously affects its operation safety and service life. Therefore, adding a thermal management system during the lithium-ion battery operation plays a vital role in improving the safety and service life of the lithium-ion battery module. In this paper, the 21700-capacity NCM811 lithium-ion power battery module is the research object. The experimental method is used to study the performance of an insulating oil immersion cooling system under the static cooling condition when the charge and discharge rates are 1 C, 1.25 C, and 1.5 C, respectively. Under insulating oil static cooling conditions, there were different oil immersion amounts (VR = 0.2, 0.5, and 1) and ambient temperatures (15 ℃, 20 ℃, 25 ℃, and 30 ℃). Furthermore, under insulating oil dynamic cooling conditions, there were various oil immersion amounts (VR = 0.2, 0.5, and 1), flow rates (3 mL/s, 6 mL/s, 9 mL/s, and 12 mL/s), and the position of the insulating oil inlet and outlet for the battery module's temperature rise characteristics. The results demonstrate that the application of an insulating oil immersion cooling system has a noticeable effect on reducing the maximum temperature and improving the temperature uniformity of the module. The thermal management effect is significantly improved with the increase in oil immersion and is very sensitive to ambient temperature changes under static cooling. Moreover, the thermal management effect of the battery module is considerably enhanced under dynamic cooling of the insulating oil with the increase in volume and flow rate, as well as the optimization of the import and export process.

Key words: immersion cooling, battery thermal management, maximum temperature, temperature uniformity

中图分类号: