1 |
李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562. DOI: 10.19799/j.cnki.2095-4239.2021.0530.
|
|
LI S K, LIN Y, PAN F. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. DOI: 10.19799/j.cnki. 2095-4239.2021.0530.
|
2 |
BHARATHIRAJA R, RAMKUMAR T, KARTHICK L, et al. Performance investigation on flat plate solar water collector using a hybrid nano-enhanced phase change material (PCM)[J]. Journal of Energy Storage, 2024, 86: 111163. DOI: 10.1016/j.est. 2024.111163.
|
3 |
HOSSEINPOUR A, POURFALLAH M, GHOLINIA M. Analysis of phase change material (PCM) melting utilizing environmentally friendly nanofluids in a double tube with spiral fins: A numerical study[J]. International Journal of Thermofluids, 2024, 22: 100620. DOI: 10.1016/j.ijft.2024.100620.
|
4 |
PIRASACI T, SUNOL A. Potential of phase change materials (PCM) for building thermal performance enhancement: PCM-composite aggregate application throughout Turkey[J]. Energy, 2024, 292: 130589. DOI: 10.1016/j.energy.2024.130589.
|
5 |
AL-ABIDI A A, MAT S, SOPIAN K, et al. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins[J]. International Journal of Heat and Mass Transfer, 2013, 61: 684-695. DOI: 10.1016/j.ijheatmasstransfer.2013.02.030.
|
6 |
吴炜, 李守成, 谢纬安. 翅片参数与PCM材料对散热器传热影响实验研究[J]. 储能科学与技术, 2021, 10(6): 2303-2311. DOI: 10.19799/j.cnki.2095-4239.2021.0426.
|
|
WU W, LI S C, XIE W A. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator[J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. DOI: 10.19799/j.cnki.2095-4239.2021.0426.
|
7 |
YE W B. Enhanced latent heat thermal energy storage in the double tubes using fins[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(1): 533-540. DOI: 10.1007/s10973-016-5870-3.
|
8 |
XIAO X, JIA H W, PERVAIZ S, et al. Molten salt/metal foam/graphene nanoparticle phase change composites for thermal energy storage[J]. ACS Applied Nano Materials, 2020, 3(6): 5240-5251. DOI: 10.1021/acsanm.0c00648.
|
9 |
EANEST JEBASINGH B, VALAN ARASU A. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications[J]. Energy Storage Materials, 2020, 24: 52-74. DOI: 10.1016/j.ensm.2019.07.031.
|
10 |
杜昭, 阳康, 舒高, 等. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. DOI: 10.19799/j.cnki. 2095-4239.2021.0422.
|
|
DU Z, YANG K, SHU G, et al. Experimental study on the heat storage and release of the solid-liquid phase change in metal-foam-filled tube[J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. DOI: 10.19799/j.cnki.2095-4239. 2021.0422.
|
11 |
ARAMESH M, SHABANI B. Metal foam-phase change material composites for thermal energy storage: A review of performance parameters[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111919. DOI: 10.1016/j.rser.2021.111919.
|
12 |
SHI J, DU H Y, CHEN Z Q, et al. Review of phase change heat transfer enhancement by metal foam[J]. Applied Thermal Engineering, 2023, 219: 119427. DOI: 10.1016/j.applthermaleng. 2022.119427.
|
13 |
ALHUSSENY A, AL-ZURFI N, NASSER A, et al. Impact of using a PCM-metal foam composite on charging/discharging process of bundled-tube LHTES units[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119320. DOI: 10.1016/j.ijheatmasstransfer.2020.119320.
|
14 |
GE R H, LI Q, LI C, et al. Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system[J]. Renewable Energy, 2022, 187: 829-843. DOI: 10.1016/j.renene.2022.01.097.
|
15 |
ESAPOUR M, HAMZEHNEZHAD A, ALI RABIENATAJ DARZI A, et al. Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system[J]. Energy Conversion and Management, 2018, 171: 398-410. DOI: 10.1016/j.enconman.2018.05.086.
|
16 |
YANG X H, XU F F, WANG X Y, et al. Solidification in a shell-and-tube thermal energy storage unit filled with longitude fins and metal foam: A numerical study[J]. Energy and Built Environment, 2023, 4(1): 64-73. DOI: 10.1016/j.enbenv.2021.08.002.
|
17 |
LV L Q, HUANG S Y, RONG Y, et al. Research on the thermal behavior of medium-temperature phase change materials and factors influencing the thermal performance based on a vertical shell-and-tube latent heat storage system[J]. Journal of Energy Storage, 2024, 82: 110591. DOI: 10.1016/j.est.2024.110591.
|
18 |
HASSANI SOUKHT ABANDANI M, DOMIRI GANJI D. Melting effect in triplex-tube thermal energy storage system using multiple PCMs-porous metal foam combination[J]. Journal of Energy Storage, 2021, 43: 103154. DOI: 10.1016/j.est. 2021. 103154.
|
19 |
GHAHREMANNEZHAD A, XU H J, SALIMPOUR M R, et al. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams[J]. Applied Thermal Engineering, 2020, 179: 115731. DOI: 10.1016/j.applthermaleng.2020.115731.
|
20 |
LI H Y, HU C Z, HE Y C, et al. Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities[J]. Energy, 2021, 237: 121540. DOI: 10.1016/j.energy.2021.121540.
|
21 |
YANG X H, BAI Q S, ZHANG Q L, et al. Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage[J]. Applied Energy, 2018, 225: 585-599. DOI: 10.1016/j.apenergy.2018.05.063.
|
22 |
TABASSUM T, HASAN M, BEGUM L. DynamicHeat transfer study of a triangular-shaped latent heat storage unit for the attic space of aDomestic dwel1 ing[J]. Journal of Thermal Science and Engineering Applications, 2018, 10(6): 061015. DOI: 10.1115/1.4040645.
|
23 |
KADIVAR M R, MOGHIMI M A, SAPIN P, et al. Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store[J]. Journal of Energy Storage, 2019, 26: 101030. DOI: 10.1016/j.est.2019.101030.
|
24 |
MODI N, WANG X L, NEGNEVITSKY M. Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage[J]. Applied Thermal Engineering, 2022, 214: 118812. DOI: 10.1016/j.applthermaleng. 2022.118812.
|
25 |
PATEL J R, RATHOD M K, SHEREMET M. Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin[J]. Journal of Energy Storage, 2022, 50: 104167. DOI: 10.1016/j.est. 2022. 104167.
|
26 |
MAHDI J M, NSOFOR E C. Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination[J]. Applied Energy, 2017, 191: 22-34. DOI: 10.1016/j.apenergy.2016.11.036.
|
27 |
KRISHNAN S, MURTHY J Y, GARIMELLA S V. A two-temperature model for solid-liquid phase change in metal foams[J]. Journal of Heat Transfer, 2005, 127(9): 995-1004. DOI: 10.1115/1.2010494.
|