储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1931-1942.doi: 10.19799/j.cnki.2095-4239.2024.1080

• 储能材料与器件 • 上一篇    下一篇

基于高孔隙率泡沫金属的偏心管式复合相变储热单元储热性能数值模拟

李一鸣(), 严景好, 席丽娜, 孙晓兵, 刘鸣皋, 李杰(), 孙小琴   

  1. 长沙理工大学能源与动力工程学院,湖南 长沙 410114
  • 收稿日期:2024-11-19 修回日期:2024-12-12 出版日期:2025-05-28 发布日期:2025-05-21
  • 通讯作者: 李杰 E-mail:lym2844937676@163.com;lijie@csust.edu.cn
  • 作者简介:李一鸣(1999—),男,硕士研究生,研究方向为相变材料传热性能强化,E-mail:lym2844937676@163.com
  • 基金资助:
    国家自然科学基金(52208094);湖南省科技厅(2021JJ40584);郴州市科技局(2022sfq27);长沙理工大学项目(CLKYCX24054)

Numerical simulation study on the thermal storage performance of eccentric tubular phase change thermal storage units filled with composite phase change materials/metal foam

Yiming LI(), Jinghao YAN, Li'na XI, Xiaobing SUN, Minggao LIU, Jie LI(), Xiaoqin SUN   

  1. School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
  • Received:2024-11-19 Revised:2024-12-12 Online:2025-05-28 Published:2025-05-21
  • Contact: Jie LI E-mail:lym2844937676@163.com;lijie@csust.edu.cn

摘要:

为有效提高相变储热单元的储热性能,本文利用数值模拟方法对填充泡沫金属-石蜡复合相变材料的偏心式三管相变储热器进行熔化性能及结构改进研究,重点分析了偏心率、换热温差(ΔT,传热流体温度与相变温度之差)及泡沫金属孔密度对储热性能的影响。研究结果表明,偏心率H对三管储热器的储热性能有显著影响,低正偏心率时结构顶、底部熔化协同性好。此外,相变材料的熔化速率随着偏心率增加先增大后减小,最优偏心率为2/15。与同心管结构相比,其完全熔化时间缩短12.36%。此外,与同心管结构相比,当H≤-1/15或H≥4/15时,偏心设置均会起到抑制传热作用。提高换热温差能显著提高传热速率,且随着换热温差持续增加,其单位温差对熔化的促进作用在缓慢衰减,综合来看,换热温差为10 ℃时,其换热效果较好。针对偏心率H=0、2/15和-4/15三种结构的储热器,换热温差由5 ℃升至20 ℃,完全熔化时间优化率提高了58.30%、59.62%和54.15%。减小孔密度有利于增强相变材料熔化过程中的自然对流传热,当ΔT=10 ℃且偏心率为2/15时,偏心管结构孔密度由50PPI(1 in的平均孔数,1 in=2.54 cm)减小至30PPI,熔化时间优化率4.52%。

关键词: 偏心管储热装置, 相变材料, 金属泡沫, 传热增强, 数值模拟

Abstract:

To effectively enhance the thermal storage performance of phase change thermal storage units, this study employs numerical simulation methods to analyze the melting performance and structural optimization of an eccentric three-tube phase change thermal storage unit filled with composite phase change materials (PCMs)/ metal foam. The study examines the effects of three key factors: eccentricity, the temperature difference between the heat transfer fluid and the phase transition temperature (ΔT),and the pore density of the metal foam on thermal energy storage performance. The results reveal that eccentricity plays a critical role in the thermal storage performance of the three-tube heat reservoir. The melting synergy between the top and bottom regions of the structure is optimal when the positive eccentricity is low. In addition, the melting rate of PCMs increases first and then decreases as eccentricity rises, with the optimal eccentricity determined to be 2/15. Under this condition, the complete melting time is shortened by 12.36% compared to a concentric tube structure. However, at eccentricities of H≤-1/15 or H≥4/15, the eccentric setting inhibits heat transfer compared to the concentric tube structure. Further findings indicate that increasing ΔT significantly improves thermal storage efficiency. The optimal ΔT for different eccentric structures is identified as 10 ℃. Reducing the pore density of the metal foam improves natural convection heat transfer within the pores during the PCM melting process. With ΔT=10 ℃ and an eccentricity of 2/15, reducing the pore density from 50 PPI to 30 PPI increases the melting rate by 4.52%.

Key words: eccentric tube thermal storage unit, phase change materials, metal foam, heat transfer enhancement, numerical simulation

中图分类号: