1 |
李建林, 惠东, 靳文涛 . 大规模储能技术[M]. 北京: 机械工业出版社, 2018.
|
|
LI Jianlin , HUI Dong , JIN Wentao . Large scale energy storage technology[M]. Beijing: China Machine Press, 2018.
|
2 |
谢聪鑫, 郑琼, 李先锋, 等 . 液流电池技术的最新进展[J]. 储能科学与技术, 2017, 6(5): 1050-1057.
|
|
XIE Congxin , ZHENG Qiong , LI Xianfeng , et al . Current advances in the flow battery technology[J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057.
|
3 |
ALOTTO P , GUARNIERI M , MORO F . Redox flow batteries for the storage of renewable energy: A review[J]. Renewable and Sustainable Energy Reviews, 2014(29): 325-335.
|
4 |
KIM K J , PARK M S , KIM Y J , et al . A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2015(33): 16913-16933.
|
5 |
LOURENSSEN K , WILLIAMS J , AHMADPOUR F , et al . Vanadium redox flow batteries: A comprehensive review[J]. Journal of Energy Storage, 2019(25): 100844-100861.
|
6 |
CRISTINA F , MARCEL S , JAVIER R G , et al . Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries[J]. Applied Energy, 2013(109): 344-351.
|
7 |
COUPER A M , PLETCHER D , WALSH F C . Electrode materials for electrosynthesis[J]. Chemical Reviews, 1990(90): 837-865.
|
8 |
陈金庆, 汪钱, 王保国 . 全钒液流电池关键材料研究进展[J]. 现代化工, 2006, 26(9): 21-24.
|
|
CHEN Jinqing , WANG Qian , WANG Baoguo . Research progress in key materials for all vanadium redox flow battery[J]. Modern Chemical Industry, 2006, 26(9): 21-24.
|
9 |
PARASURAMAN A , LIM T M, MENICTAS C , et al . Review of material research and development for vanadium redox flow battery applications[J]. Electrochimica Acta, 2013(101): 27-40.
|
10 |
钱鹏, 张华民, 陈剑, 等 . 全钒液流电池用电极及双极板研究进展[J]. 能源工程, 2007(1): 7-11.
|
|
QIAN Peng , ZHANG Huamin , CHEN Jian , et al . Progress on electrode and bipolar plate materials for vanadium redox flow batteries[J]. Energy Engineering, 2007(1): 7-11.
|
11 |
KIM K J , KIM Y J , KIM J H , et al . The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries[J]. Materials Chemistry and Physics, 2011(131): 547-553.
|
12 |
KIM K J , PARK M S , KIM J H , et al . Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries[J]. Chemical Communications, 2012(48): 5455-5457.
|
13 |
MELANIE P , RICHARD L M , ROYCE E . Laser activation of carbon electrodes. Relationship between laser-induced surface effects and electron transfer activation[J]. Analytic Chemistry, 1988(60): 1725-1730.
|
14 |
KIM Y , CHOI Y Y , YUN N , et al . Activity gradient carbon felt electrodes for vanadium redox flow batteries[J]. Journal of Power Sources, 2018(408): 128-135.
|
15 |
刘然, 廖孝艳, 杨春, 等 . 全钒液流电池石墨毡电极酸、热处理方法的对比[J]. 化工进展, 2011, 30(S1): 762-766.
|
|
LIU Ran , LIAO Xiaoyan , YANG Chun , et al . Different treatments of graphite electrode materials for vanadium redox flow battery[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 762-766.
|
16 |
MELANITIS N , TETLOW P L , GALIOTIS C . Characterization of PAN-based carbon fibres with laser Raman spectroscopy[J]. Journal of Materials Science, 1996(31): 851-860.
|
17 |
NIKIEL L , JAGODZINSKI P W . Raman spectroscopic characterization of graphites: A re-evaluation of spectra structure correlation[J]. Carbon, 1993, 31(8): 1313-1317.
|
18 |
张新, 马雷, 李常清, 等 . PAN基碳纤维微结构特征的研究[J]. 北京化工大学学报(自然科学版), 2008, 35(5): 57-60.
|
|
ZHANG Xin , MA Lei , LI Changqing , et al . Study of the microstructure of PAN-based carbon fibers[J]. Journal of Beijing University of Chemical Technology, 2008, 35(5): 57-60.
|
19 |
YUEZ R , JIANG W , WANG L , et al . Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon, 1999(37): 1785-1796.
|
20 |
SUN B , KAZACOS M S . Modification of graphite electrode materials for vanadium redox flow battery application–I. thermal treatment[J]. Electrochimica Acta, 1992(37): 1253-1260.
|