[1] TURNER J A. A realizable renewable energy future[J]. Science, 1999, 285(5428): 687-689.
[2] YANG Z, ZHANG J, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
[3] THALLER L H. Electrically rechargeable redox flow cell: US 3996064[P]. 1976-12-7.
[4] MANOHAR A K, KIM K M, PLICHTA E, et al. A high efficiency iron-chloride redox flow battery for large-scale energy storage[J]. Journal of The Electrochemical Society, 2015, 163(1): A5118-A5125.
[5] REMICK R J, ANG P G. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system: US 4485154[P]、1984-11-27.
[6] LAI Q, ZHANG H, LI X, et al. A novel single flow zinc-bromine battery with improved energy density[J]. Journal of Power Sources, 2013, 235(4): 1-4.
[7] PARKER J F, CHERVIN C N, PALA I R, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science, 2017, 356(6336): 415-418.
[8] NOACK J, ROZNYATOVSKAYA N, HERR T, et al. The chemistry of redox-flow batteries[J]. Angewandte Chemie International Edition, 2015, 54(34): 9776-9809.
[9] LI X, ZHANG H, MAI Z, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy & Environmental Science, 2011, 4(4): 1147-1160.
[10] GONG K, FANG Q, GU S, et al. Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs[J]. Energy & Environmental Science, 2015, 8(12): 3515-3530.
[11] SINGH P. Application of non-aqueous solvents to batteries[J]. Journal of Power Sources, 1984, 11(1): 135-142.
[12] WEI X, XU W, VIJAYAKUMAR M, et al. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries[J]. Advanced Materials, 2014, 26(45): 7649-7653.
[13] DING Y, ZHAO Y, YU G. A membrane-free ferrocene-based high-rate semiliquid battery[J]. Nano Letters, 2015, 15(6): 4108-4113.
[14] WEI X, COSIMBESCU L, XU W, et al. Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species[J]. Advanced Energy Materials, 2015, 5(1): doi: 10.1002/ aenm.201400678.
[15] XI X, LI X, WANG C, et al. Non-aqueous lithium bromine battery of high energy density with carbon coated membrane[J]. Journal of Energy Chemistry, 2017: https://doi.org/10.1016/j.jechem.2017.04.013.
[16] WEI X, XU W, HUANG J, et al. Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery[J]. Angewandte Chemie, 2015, 54(30): 8684-8687.
[17] HUSKINSON B, MARSHAK M P, SUH C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198.
[18] LIN K, CHEN Q, GERHARDT M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532.
[19] JANOSCHKA T, MARTIN N, MARTIN U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature, 2015, 527(7576): 78-81.
[20] LI B, NIE Z, VIJAYAKUMAR M, et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery[J]. Nature Communications, 2015: doi:10.1038/ncomms7303.
[21] LI Z, WENG G, ZOU Q, et al. A high-energy and low-cost polysulfide/iodide redox flow battery[J]. Nano Energy, 2016, 30: 283-292.
|