1 |
杨林, 王含, 李晓蒙, 等. 铁-铬液流电池250 kW/1.5 MW·h示范电站建设案例分析[J]. 储能科学与技术, 2020, 9(3): 751-756.
|
|
YANG L, WANG H, LI X M, et al. Introduction and engineering case analysis of 250 kW/1.5 MW·h iron-chromium redox flow batteries energy storage demonstration power station[J]. Energy Storage Science and Technology, 2020, 9(3): 751-756.
|
2 |
DING Y, ZHANG C K, ZHANG L Y, et al. Molecular engineering of organic electroactive materials for redox flow batteries[J]. Chemical Society Reviews, 2018, 47(1): 69-103.
|
3 |
ZHANG C K, ZHANG L Y, DING Y, et al. Progress and prospects of next-generation redox flow batteries[J]. Energy Storage Materials, 2018, 15: 324-350.
|
4 |
ZHANG C K, NIU Z H, PENG S S, et al. Phenothiazine-based organic catholyte for high-capacity and long-life aqueous redox flow batteries[J]. Advanced Materials, 2019, 31(24): 1901052.
|
5 |
胡磊, 高莉, 焉晓明, 等. 全钒液流电池膜离子选择性传导通道构建的研究进展[J]. 化工进展, 2020, 39(6): 2079-2092.
|
|
HU L, GAO L, YAN X M, et al. Progress in construction of ion-selective transport channels in membranes for vanadium flow batteries[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2079-2092.
|
6 |
JIANG B, WU L T, YU L H, et al. A comparative study of Nafion series membranes for vanadium redox flow batteries[J]. Journal Membrane Science, 2016, 510: 18-26.
|
7 |
YE J Y, ZHAO X L, MA Y L, et al. Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra‐stable and high-performance vanadium redox flow batteries[J]. Advanced Energy Materials, 2020, 10(22): 1904041.
|
8 |
ZHANG B G, ZHANG S H, WENG Z H, et al. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications[J]. Journal of Power Sources, 2016, 325: 801-807.
|
9 |
ZHANG B G, WANG Q, GUAN S S, et al. High performance membranes based on new 2-adamantane containing poly(aryl ether ketone) for vanadium redox flow battery applications[J]. Journal of Power Sources, 2018, 399: 18-25.
|
10 |
DING Liming, SONG Xipeng, WANG Lihua, ZHAO Zhiping. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications[J]. Journal Membrane Science, 2019, 578: 126-135.
|
11 |
CHEN Y N, ZHANG S H, JIN J Y, et al. Poly(phthalazinone ether ketone) amphoteric ion exchange membranes with low water transport and vanadium permeability for vanadium redox flow battery application[J]. ACS Applied Energy Materials 2019, 2(11): 8207-8218.
|
12 |
CHEN Y N, ZHANG S H, LIU Q, et al. Investigation of poly(phthalazinone ether ketone) amphoteric ion exchange membranes in vanadium redox flow batteries[J]. Journal of Materials Science, 2020, 55(28): 13964-13979.
|
13 |
YANG P, LONG J, XUAN S S, et al. Branched sulfonated polyimide membrane with ionic cross-linking for vanadium redox flow battery application[J]. Journal of Power Sources, 2019: 438: 226993.
|
14 |
HUANG X D, PU Y, ZHOU Y Q, et al. In-situ and ex-situ degradation of sulfonated polyimide membrane for vanadium redox flow battery application[J]. Journal Membrane Science, 2017, 526: 281-292.
|
15 |
LU W J, YUAN Z Z, ZHAO Y Y, et al. High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces[J]. Energy & Environmental Science, 2016, 9(7): 2319-2325.
|
16 |
ZHANG Y X, ZHENG L Y, LIU B, et al. Sulfonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow battery[J]. Journal Membrane Science, 2019, 584: 173-180.
|
17 |
DAI W J, SHEN Y, LI Z H, et al. SPEEK/graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery[J]. Journal of Materials Chemistry A, 2014, 2(31): 12423-12432.
|
18 |
ZHANG Y X, WANG H X, LIU B, et al. An ultra-high ion selective hybrid proton exchange membrane incorporated with zwitterion-decorated graphene oxide for vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2019, 7(20): 12669-12680.
|
19 |
YUAN Z Z, LI X F, HU J B, et al. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium[J]. Physical Chemistry Chemical Physics, 2014, 16(37): 19841-19847.
|
20 |
JIANG B W, HU L, YAN X M, et al. A new long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) /polybenzimidazole (PBI) amphoteric membrane for vanadium redox flow battery[J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1918-1924.
|
21 |
CHEN Y, LIU Z C, LIN M J, et al. Selectivity enhancement of quaternized poly(arylene ether ketone) membranes by ion segregation for vanadium redox flow batteries[J]. Science China Chemistry, 2019, 62(4): 479-490.
|
22 |
HU L, GAO L, ZHANG C K, et al. "Fishnet-like" ion-selective nanochannels in advanced membranes for flow batteries[J]. Journal of Materials Chemistry A, 2019, 7(37): 21112-21119.
|
23 |
HU L, GAO L, YAN X M, et al. Proton delivery through a dynamic 3D H-bond network constructed from dense hydroxyls for advanced ion-selective membranes[J]. Journal of Materials Chemistry A, 2019, 7(25): 15137-15144.
|
24 |
HU L, DU Y, GAO L, et al. Nanoscale solid superacid-coupled polybenzimidazole membrane with high ion selectivity for flow batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(44): 16493-16502.
|
25 |
CHEN D J, QI H N, SUN T T, et al. Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications[J]. Journal of Membrane Science, 2019, 586: 202-210.
|
26 |
XI J Y, LI Z H, YU L H, et al. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery[J]. Journal of Power Sources, 2015, 285: 195-204.
|
27 |
CHU F Q, CHU X F, LÜ T, et al. Amphoteric membranes based on sulfonated polyether ether ketone and imidazolium-functionalized polyphenylene oxide for vanadium redox flow battery applications[J]. ChemElectroChem, 2019, 6(19): 5041-5050.
|
28 |
PAN J, CHEN C, LI Y, et al. Constructing ionic highway in alkaline polymer electrolytes[J]. Energy & Environmental Science, 2014, 7(1): 354-360.
|
29 |
GAO L, WANG Y, CUI C Y, et al. Anion exchange membranes with "rigid-side-chain" symmetric piperazinium structures for fuel cell exceeding 1.2 W·cm-2 at 60 ℃[J]. Journal of Power Sources, 2019, 438: 227021.
|