1 |
曾建邦, 孔雪莹, 刘立超, 等. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制[J]. 物理学报, 2019, 68(1): 293-308.
|
|
ZENG J B, KONG X Y, LIU L C, et al. Mechanism of influence of separator microstructure on performance of lithium-ion battery based on electrochemical-thermal coupling model[J]. Acta Physica Sinica, 2019, 68(1): 293-308.
|
2 |
PEABODY C, ARNOLD C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196(19): 8147-8153.
|
3 |
PAN Y H, ZHONG Z. Modeling the ion transport restriction in mechanically strained separator membranes[J]. Journal of the Electrochemical Society, 2014, 161(4): A583-A586.
|
4 |
PAN R J, WANG Z H, SUN R L, et al. Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries[J]. Cellulose, 2017, 24: 2903-2911.
|
5 |
DEIMEDE V, ELMASIDES C. Separators for lithium-ion batteries: A review on the production processes and recent developments[J]. Energy Technology, 2015: 453-468.
|
6 |
CANNARELLA J, LIU X Y, LENG C Z, et al. Mechanical properties of a battery separator under compression and tension[J]. Journal of the Electrochemical Society, 2014, 161(11): F3117-F3122.
|
7 |
YAN S T, HUANG X S, XIAO X R. Measurement of the through thickness compression of a battery separator[J]. Journal of Power Sources, 2018, 382: 13-21.
|
8 |
CHEN J H, HU H J, LI S, et al. Evolution of mechanical properties of polypropylene separator in liquid electrolytes for lithium-ion batteries[J]. Journal of Applied Polymer Science, 2018, 135: 46441.
|
9 |
YU Y S, XIONG B J, ZENG F X Y, et al. Influences of compression on the mechanical behavior and electrochemical performances of separators for lithium ion batteries[J]. Industrial & Engineering Chemistry Research, 2018, 57(50): 17142-17151.
|
10 |
DING L, ZHANG C, WU T, et al. Effect of temperature on compression behavior of polypropylene separator used for Lithium-ion battery[J]. Journal of Power Sources, 2020, 466:228300.
|
11 |
XIAO X R, WU W, HUANG X S. A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery[J]. Journal of Power Sources, 2010, 195(22): 7649-7660.
|
12 |
SHI D H, XIAO X R, HUANG X S, et al. Modeling stresses in the separator of a pouch lithium-ion cell[J]. Journal of Power Sources, 2011, 196: 8129-8139.
|
13 |
WU W, XIAO X R, HUANG X S, et al. A multiphysics model for the stress analysis of the separator in a lithium-ion battery[J]. Computational Materials Science, 2014, 83: 127-136.
|
14 |
GOR G Y, CANNARELLA J, PREVOST J H, et al. A model for the behavior of battery separators in compression at different strain/charge rates[J]. Journal of the Electrochemical Society, 2014, 161(11): F3065-F3071.
|
15 |
李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展, 2003, 18(4): 419-426.
|
|
LI P C, KONG X Y, LU D T. Mathematical modeling of flow in saturated porous media on account of fluid-structure coupling effect[J]. Journal of Hydrodynamics, 2003, 18(4): 419-426.
|
16 |
BIOT M A. General theory of three‐dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164.
|
17 |
RICE J R, CLEARY M P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J]. Reviews of Geophysics, 1976, 14(2): 227-242.
|