储能科学与技术 ›› 2021, Vol. 10 ›› Issue (2): 483-490.doi: 10.19799/j.cnki.2095-4239.2020.0348

• 储能材料与器件 • 上一篇    下一篇

锂离子电池隔膜在压缩过程中的流固耦合效应

马德正(), 李培超(), 张恒运   

  1. 上海工程技术大学机械与汽车工程学院,上海 201620
  • 收稿日期:2020-10-22 修回日期:2021-01-07 出版日期:2021-03-05 发布日期:2021-03-05
  • 通讯作者: 李培超 E-mail:dezhengma525@163.com;wiselee18@163.com
  • 作者简介:马德正(1995—),男,硕士研究生,研究方向为锂离子电池多物理场耦合数值模拟,E-mail:dezhengma525@163.com;
  • 基金资助:
    上海市自然科学基金项目(19ZR1421400);国家自然科学基金项目(51876113)

Fluid-structure coupling effect of lithium-ion battery separator under compression

Dezheng MA(), Peichao LI(), Hengyun ZHANG   

  1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2020-10-22 Revised:2021-01-07 Online:2021-03-05 Published:2021-03-05
  • Contact: Peichao LI E-mail:dezhengma525@163.com;wiselee18@163.com

摘要:

隔膜作为锂离子电池的重要组成部分,其对电池性能的影响至关重要。外载、锂离子嵌入/脱出和温度等影响导致电池组件产生应变并压缩较软的隔膜变形。多孔介质隔膜在受到压缩时的响应是由聚合物隔膜骨架的黏弹性和孔隙内部的电解液引发的孔隙弹性共同作用。为深入探讨隔膜在压缩过程中的孔隙弹性现象,本文建立了能够描述隔膜在不同应变率压缩下流固耦合效应的轴对称数学模型,模型同时引入了孔隙度和渗透率的动态特性,并利用数值模拟软件进行求解。该模型数值结果较文献中数值结果更接近实验数据。通过对隔膜内部孔隙压力、孔隙度和渗透率的研究,发现隔膜孔隙弹性效应会导致隔膜内部孔隙度和渗透率的分布不均。同时还利用该模型对隔膜的渗透率、几何尺寸、杨氏模量、泊松比、液体体积模量以及黏度开展了参数分析,探究了其对隔膜压缩过程中的孔隙弹性效应的影响。研究结果有助于深入认识锂离子电池隔膜孔隙弹性力学行为,同时还可为隔膜材料和几何参数的优化提供理论依据。

关键词: 锂离子电池, 隔膜, 流固耦合, 应变率, 孔隙度, 渗透率

Abstract:

Separator is an important component of lithium-ion batteries, whose property is crucial to the battery performance. Mechanical loading, intercalation/deintercalation of lithium ions on the electrode, and temperature can cause the deformation of battery components, which then compresses the soft separator. The response of a porous medium separator under compression is determined by the viscoelastic behavior of the polymer skeleton and the poroelastic behavior due to the electrolyte in the pores. A axisymmetric mathematical model capable of describing the fluid-structure coupling effect of the separator under compression at different strain rates is established in this paper. The model also introduces dynamic properties of porosity and permeability, and is solved by numerical simulation software. The numerical results in this work are closer to the experimental data than the numerical results in the literature. It is found that the poroelastic effect of the separator leads to the inhomogeneous distribution of porosity and permeability. The model is also used to analyze the permeability, geometry, Young's modulus, Poisson's ratio, fluid bulk modulus, and viscosity of the separator and discuss their effects on the poroelastic behavior of the separator during compression. The findings in this study are of benefit to obtain in-depth understanding of the poroelastic behavior of the separator. Meanwhile, they can also provide theoretical basis for optimization of separator materials and geometrical parameters.

Key words: lithium-ion battery, separator, fluid-structure coupling, strain rate, porosity, permeability

中图分类号: