[1] 查全性. 化学电源选论[M]. 湖北: 武汉大学出版社, 2005.
ZHA Q X. Selected topics in chemical power sources[M]. Hubei: Wuhan Univrsity Press, 2005.
[2] LIU C, LI F, MA L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.
[3] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[4] CHEN T, DAI L M. Carbon nanomaterials for high-performance supercapacitors[J]. Materials Today, 2013, 16(7/8): 272-280.
[5] SIMON P, GOGOTSI Y. Capacitive energy storage in nanostructured carbon-electrolyte systems[J]. Accounts of Chemical Research, 2013, 46(5): 1094-1103.
[6] ZHAI Y P, DOU Y Q, ZHAO D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23(42): 4828-4850.
[7] CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22.
[8] GOEPPERT A, CZAUN M, JONES J P, et al. Recycling of carbon dioxide to methanol and derived products-closing the loop[J]. Chemical Society Reviews, 2014, 43(23): 7995-8048.
[9] QIAO J, LIU Y, HONG F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675.
[10] SHI J, JIANG Y, JIANG Z, et al. Enzymatic conversion of carbon dioxide[J]. Chemical Society Reviews, 2015, 44(17): 5981-6000.
[11] VON DER ASSEN N, VOLL P, PETERS M, et al. Life cycle assessment of CO2 capture and utilization: A tutorial review[J]. Chemical Society Reviews, 2014, 43(23): 7982-7994.
[12] GHOSH A, LEE Y H. Carbon-based electrochemical capacitors[J]. ChemSusChem, 2012, 5(3): 480-499.
[13] JI L, MEDURI P, AGUBRA V, et al. Graphene-based nanocomposites for energy storage[J]. Advanced Energy Materials, 2016, 6(16): 1502159.
[14] B GUIN F, PRESSER V, BALDUCCI A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials, 2014, 26(14): 2219-2251.
[15] WANG Y, SONG Y, XIA Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950.
[16] BOSE S, KUILA T, MISHRA A K, et al. Carbon-based nanostructured materials and their composites as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2012, 22(3): 767-784.
[17] XU Y, LIN Z, ZHONG X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications, 2014, 5: 4554.
[18] LUO W, WANG B, WANG X, et al. Production of graphene by reduction using a magnesiothermic reaction[J]. Chemical Communications, 2013, 49(91): 10676-10678.
[19] XING Z, WANG B, HALSTED J K, et al. Direct fabrication of nanoporous graphene from graphene oxide by adding a gasification agent to a magnesiothermic reaction[J]. Chemical Communications, 2015, 51(10): 1969-1971.
[20] SHAFIROVICH E Y, GOLDSHLEGER U I. Combustion of magnesium particles in CO2/CO mixtures[J]. Combustion Science and Technology, 1992, 84(1/6): 33-43.
[21] CHAKRABARTI A, LU J, SKRABUTENAS J C, et al. Conversion of carbon dioxide to few-layer graphene[J]. Journal of Materials Chemistry, 2011, 21(26): 9491-9493.
[22] CUNNING B V, PYLE D S, MERRITT C R, et al. Hydrogen adsorption characteristics of magnesium combustion derived graphene at 77 and 293 K[J]. International Journal of Hydrogen Energy, 2014, 39(12): 6783-6788.
[23] ZHANG H, ZHANG X, SUN X, et al. Large-scale production of nanographene sheets with a controlled mesoporous architecture as high-performance electrochemical electrode materials[J]. ChemSusChem, 2013, 6(6): 1084-1090.
[24] ZHANG J, TIAN T, CHEN Y H, et al. Synthesis of graphene from dry ice in flames and its application in supercapacitors[J]. Chemical Physics Letters, 2014, 591:78-81.
[25] ZHANG H, ZHANG X, SUN X, et al. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide[J]. Scientific Reports, 2013, 3: 3534.
[26] XING Z Y, WANG B, GAO W Y, et al. Reducing CO2 to dense nanoporous graphene by Mg/Zn for high power electrochemical capacitors[J]. Nano Energy, 2015, 11: 600-610.
[27] CHANG L, WEI W, SUN K, et al. 3D flower-structured graphene from CO2 for supercapacitors with ultrahigh areal capacitance at high current density[J]. Journal of Materials Chemistry A, 2015, 3(19): 10183-10187.
[28] WEI W, SUN K, HU Y H. Synthesis of 3D cauliflower-fungus-like graphene from CO2 as a highly efficient counter electrode material for dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2014, 2(40): 16842-16846.
[29] ZHANG J, ZHAO Y, GUAN X, et al. Formation of graphene oxide nanocomposites from carbon dioxide using ammonia borane[J]. Journal of Physical Chemistry C, 2012, 116(3): 2639-2644.
[30] ZHANG J S, LEE J W. Production of boron-doped porous carbon by the reaction of carbon dioxide with sodium borohydride at atmospheric pressure[J]. Carbon, 2013, 53: 216-221.
[31] ZHANG J S, LEE J W. Supercapacitor electrodes derived from carbon dioxide[J]. Acs Sustainable Chemistry & Engineering, 2014, 2(4): 735-740.
[32] LIU G, CHEN K, ZHOU H, et al. Layered growth of Ti2AlC and Ti3AlC2 in combustion synthesis[J]. Materials Letters, 2007, 61(3): 779-784.
[33] JIN S B, SHEN P, ZHOU D S, et al. A common regularity of stoichiometry-induced morphology evolution of transition metal carbides, nitrides, and diborides during self-propagating high-temperature synthesis[J]. Crystal Growth & Design, 2012, 12(6): 2814-2824.
[34] LI B Y, RONG L J, LI Y Y, et al. Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis: Reaction mechanism and anisotropy in pore structure[J]. Acta Materialia, 2000, 48(15): 3895-3904.
[35] SU X, FU F, YAN Y, et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing[J]. Nature Communications, 2014, 5: 4908.
[36] LI Y, LIU G, CAO T, et al. Enhanced thermoelectric properties of Cu2SnSe3 by Ag/In co-doping[J]. Advanced Functional Materials, 2016, 26(33): 6025-6032.
[37] MUKASYAN A S, ROGACHEV A S, ARUNA S T. Combustion synthesis in nanostructured reactive systems[J]. Advanced Powder Technology, 2015, 26(3): 954-976.
[38] KUZNETSOV M V, MOROZOV I G, PARKIN I P. Self-propagating high-temperature synthesis of aluminum substituted lanthanum ferrites LaFe1xAlxO3[J]. New Journal of Chemistry, 2015, 39(12): 9834-9840.
[39] LI C, ZHANG X, WANG K, et al. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability[J]. Advanced Materials, 2017, 29(7): 1604690.
|