储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 1026-1040.doi: 10.12028/j.issn.2095-4239.2017.0106
谷 穗,靳 俊,卢 洋,钱 荣,温兆银
收稿日期:
2017-06-16
修回日期:
2017-07-24
出版日期:
2017-09-01
发布日期:
2017-09-01
通讯作者:
谷穗(1991—),女,博士研究生,研究方向为锂硫电池电解质,E-mail:gusui@student.sic.ac.cn;
作者简介:
谷穗(1991—),女,博士研究生,研究方向为锂硫电池电解质,E-mail:gusui@student.sic.ac.cn;
基金资助:
GU Sui, JIN Jun, LU Yang, QIAN Rong, WEN Zhaoyin
Received:
2017-06-16
Revised:
2017-07-24
Online:
2017-09-01
Published:
2017-09-01
摘要: 锂硫电池因其超高的理论比容量(1675 mA•h/g)和能量密度(2600 W•h/kg),已成为目前锂电池研究的热点和重点。但是,锂硫电池的发展依然受到很多因素的制约。其中,穿梭效应是造成锂硫电池性能衰减的主要原因之一:一方面,大量中间产物多硫化锂溶解在电解液中以及不溶性产物Li2S2/Li2S沉积在负极上,降低了活性物质的利用率,造成电池容量衰减;另一方面,穿梭会导致充电时电池发生严重过充,降低库仑效率;此外,穿梭还会引起金属锂表面的腐蚀反应。本文介绍了锂硫电池的穿梭机理,从物理作用和化学作用两方面综述了近年来锂硫电池中抑制穿梭效应的研究进展,具体涉及正极、电解质、负极等关键材料的设计与优化,并着重介绍了物理作用抑制穿梭的进展情况,最后简要评述了锂硫电池的研究现状并对其未来进行了展望。
谷 穗,靳 俊,卢 洋,钱 荣,温兆银. 锂硫电池的穿梭效应与抑制[J]. 储能科学与技术, 2017, 6(5): 1026-1040.
GU Sui, JIN Jun, LU Yang, QIAN Rong, WEN Zhaoyin. Recent progress in research on the shuttle effect and its suppression for lithium sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1026-1040.
[1] SEH Z W, SUN Y, ZHANG Q, et al. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016, 45(20): 5605-5634. [2] GAO X P, YANG H X. Multi-electron reaction materials for high energy density batteries[J]. Energy Environ. Sci., 2010, 3(2): 174-189. [3] JI X L, NAZAR L F. Advances in Li-S batteries[J]. J. Mater. Chem., 2010, 20(44): 9821-9826. [4] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chem. Rev., 2004, 104(10): 4271-4301. [5] CHEN R J, ZHAO T, WU F. From a historic review to horizons beyond: Lithium-sulphur batteries run on the wheels[J]. Chem. Commun., 2015, 51(1): 18-33. [6] ZHANG S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J]. J. Power Sources, 2013, 231: 153-162. [7] RAUH R D, ABRAHAM K M, PEARSON G F, et al. A lithium/dissolved sulfur battery with an organic electrolyte[J]. J. Electrochem. Soc., 1979, 126(4): 523-527. [8] WANG Q, ZHENG J, WALTER E, et al. Direct observation of sulfur radicals as reaction media in lithium sulfur batteries[J]. J. Electrochem. Soc., 2015, 162(3): A474-A478. [9] ZHANG S, UENO K, DOKKO K, et al. Recent advances in electrolytes for lithium-sulfur batteries[J]. Adv. Energy Mater., 2015, 5(16): 1500117. [10] MIKHAYLIK Y V, AKRIDGE J R. Polysulfide shuttle study in the Li/S battery system[J]. J. Electrochem. Soc., 2004, 151(11): A1969-A1976. [11] JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506. [12] WANG L, LIU J, YUAN S, et al. To mitigate self-discharge of lithium-sulfur batteries by optimizing ionic liquid electrolytes[J]. Energy Environ. Sci., 2016, 9(1): 224-231. [13] BARCHASZ C, LEPRETRE J C, PATOUX S, et al. Revisiting TEGDME/DIOX binary electrolytes for lithium/sulfur batteries: importance of solvation ability and additives[J]. J. Electrochem. Soc., 2013, 160(3): A430-A436. [14] SUO L, HU Y S, LI H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat. Commun., 2013, 4: 1481-1489. [15] TACHIKAWA N, YAMAUCHI K, TAKASHIMA E, et al. Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes[J]. Chem. Commun., 2011, 47(28): 8157-8159. [16] DOKKO K, TACHIKAWA N, YAMAUCHI K, et al. Solvate ionic liquid electrolyte for Li-S batteries[J]. J. Electrochem. Soc., 2013, 160(8): A1304-A1310. [17] UENO K, PARK J W, YAMAZAKI A, et al. Anionic effects on solvate ionic liquid electrolytes in rechargeable lithium-sulfur batteries[J]. Journal of Physical Chemistry C, 2013, 117(40): 20509-20516. [18] CUISINIER M, CABELGUEN P E, ADAMS B D, et al. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy Environ. Sci., 2014, 7(8): 2697-2705. [19] LU H, YUAN Y, ZHANG K, et al. Application of partially fluorinated ether for improving performance of lithium/sulfur batteries[J]. J. Electrochem. Soc., 2015, 162(8): A1460-A1465. [20] ZU C, AZIMI N, ZHANG Z, et al. Insight into lithium-metal anodes in lithium-sulfur batteries with a fluorinated ether electrolyte[J]. J. Mater. Chem. A, 2015, 3(28): 14864-14870. [21] AZIMI N, XUE Z, BLOOM I, et al. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries[J]. Acs Appl. Mater. Interfaces, 2015, 7 (17): 9169-9177. [22] GU S, QIAN R, JIN J, et al. Suppressing the dissolution of polysulfides with cosolvent fluorinated diether towards high-performance lithium sulfur batteries[J]. Phys. Chem. Chem. Phys., 2016, 18(42): 29293-29299. [23] HAYASHI A, OHTOMO T, MIZUNO F, et al. All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes[J]. Electrochem. Commun., 2003, 5(8): 701-705. [24] HAYASHI A, OHTOMO T, MIZUNO F, et al. Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S-P2S5 glass-ceramic electrolytes[J]. Electrochim. Acta, 2004, 50(2/3): 893-897. [25] KUHN A, GERBIG F, ZHU C B, et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Phys. Chem. Chem. Phys., 2014, 16(28): 14669-14674. [26] YAO X, HUANG N, HAN F, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Adv. Energy Mater., 2017, doi: 10.1002/aenm.201602923. [27] WANG L, WANG Y G, XIA Y Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte[J]. Energy Environ. Sci., 2015, 8(5): 1551-1558. [28] WANG S, DING Y, ZHOU G, et al. Durability of the Li1+xTi2xAlx(PO4)3 solid electrolyte in lithium-sulfur batteries[J]. Acs Energy Letters, 2016, 1(6): 1080-1085. [29] WANG Q S, JIN J, WU X W, et al. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte[J]. Phys. Chem. Chem. Phys., 2014, 16(39): 21225-21229. [30] YU X, BI Z, ZHAO F, et al. Polysulfide-shuttle control in lithium-sulfur batteries with a chemically/electrochemically compatible NaSICON-type solid electrolyte[J]. Adv. Energy Mater., 2016, 6(24): 1601392. [31] HUANG X, SHEN C, RUI K, et al. Influence of La2Zr2O7 additive on densification and Li+ conductivity for Ta-doped Li7La3Zr2O12 garnet[J]. Jom-J. Miner. Met. Mater. Soc., 2016, 68(10): 2593-2600. [32] MA G, WEN Z, JIN J, et al. Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite[J]. J. Power Sources, 2014, 254: 353-359. [33] ZHANG C F, WU H B, YUAN C Z, et al. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angew. Chem.-Int. Edit., 2012, 51(38): 9592-9595. [34] SEH Z W, LI W Y, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nat. Commun., 2013, 4: 1331-1336. [35] SHI J L, TANG C, PENG H J, et al. 3D mesoporous graphene: CVD self-assembly on porous oxide templates and applications in high-stable Li-S batteries[J]. Small, 2015, 11(39): 5243-5252. [36] JAYAPRAKASH N, SHEN J, MOGANTY S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem.-Int. Edit., 2011, 50(26): 5904-5908. [37] ZHAO M Q, ZHANG Q, HUANG J Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J]. Nat. Commun., 2014, 5: 3410-3417. [38] SU Y S, MANTHIRAM A. A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium-sulfur batteries[J]. Electrochim. Acta, 2012, 77: 272-278. [39] YUAN Z, PENG H J, HUANG H J, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Adv. Funct. Mater., 2014, 24(39): 6105-6112. [40] LU S T, CHEN Y, WU X H, et al. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading[J]. Sci. Rep. UK, 2014, 4: 4629-4632. [41] SUN Q, FANG X, WENG W, et al. An aligned and laminated nanostructured carbon hybrid cathode for high-performance lithium-sulfur batteries[J]. Angew. Chem.-Int. Edit., 2015, 54(36): 10539-10544. [42] EVERS S, YIM T, NAZAR L F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery[J]. Journal of Physical Chemistry C, 2012, 116(37): 19653-19658. [43] SU Y S, MANTHIRAM A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nat. Commun., 2012, 3: 1166-1171. [44] CHUNG S H, MANTHIRAM A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries[J]. Chem. Commun., 2014, 50(32): 4184-4187. [45] BALACH J, JAUMANN T, KLOSE M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J]. Adv. Funct. Mater., 2015, 25(33): 5285-5291. [46] STOECH U, BALACH J, KLOSE M, et al. Reconfiguration of lithium sulphur batteries: "Enhancement of Li-S cell performance by employing a highly porous conductive separator coating"[J]. J. Power Sources, 2016, 309: 76-81. [47] WANG Q S, WEN Z Y, YANG J H, et al. Electronic and ionic co-conductive coating on the separator towards high-performance lithium-sulfur batteries[J]. J. Power Sources, 2016, 306: 347-353. [48] ZHOU G M, LI L, WANG D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Adv. Mater., 2015, 27(4): 641-647. [49] HUANG J Q, ZHANG Q, PENG H J, et al. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries[J]. Energy Environ. Sci., 2014, 7(1): 347-353. [50] YU X W, MANTHIRAM A. Performance enhancement and mechanistic studies of room-temperature sodium-sulfur batteries with a carbon-coated functional Nafion separator and a Na2S/activated carbon nanofiber cathode[J]. Chem. Mat., 2016, 28(3): 896-905. [51] LIANG X, WEN Z, LIU Y, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. J. Power Sources, 2011, 196(22): 9839-9843. [52] MIKHAYLIK Y V. Electrolytes for lithium sulfur cells: US7354680[P]. 2008. [53] ZHANG S S. Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte[J]. J. Electrochem. Soc., 2012, 159(7): A920-A923. [54] DEMIR-CAKAN R, MORCRETTE M, GANGULIBABU, et al. Li-S batteries: Simple approaches for superior performance[J]. Energy Environ. Sci., 2013, 6(1): 176-182. [55] LIN Z, LIU Z, FU W, et al. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2013, 23(8): 1064-1069. [56] MA G Q, WEN Z Y, WU M F, et al. A lithium anode protection guided highly-stable lithium-sulfur battery[J]. Chem. Commun., 2014, 50(91): 14209-14212. [57] HUANG C, XIAO J, SHAO Y Y, et al. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures[J]. Nat. Commun., 2014, 5: 3015-3021. [58] WANG J L, YANG J, WAN C R, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Adv. Funct. Mater., 2003, 13(6): 487-492. [59] YU X G, XIE J Y, YANG J, et al. Lithium storage in conductive sulfur-containing polymers[J]. J. Electroanal. Chem., 2004, 573(1): 121-128. [60] KIM J W, OCON J D, PARK D W, et al. Functionalized graphene-based cathode for highly reversible lithium-sulfur batteries[J]. ChemSusChem, 2014, 7(5): 1265-1273. [61] SONG M K, ZHANG Y G, CAIRNS E J. A long-life, high-rate lithium/sulfur cell: A multifaceted approach to enhancing cell performance[J]. Nano Lett., 2013, 13(12): 5891-5899. [62] SHAO J, LI X, ZHANG L, et al. Core-shell sulfur@polypyrrole composites as high-capacity materials for aqueous rechargeable batteries[J]. Nanoscale, 2013, 5(4): 1460-1464. [63] MA G, WEN Z Y, JIN J, et al. Enhancement of long stability of Li-S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode[J]. RSC Adv., 2014, 4(41): 21612-21618. [64] LI G C, LI G R, YE S H, et al. A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Adv. Energy Mater., 2012, 2(10): 1238-1245. [65] XIAO L F, CAO Y L, XIAO J, et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Adv. Mater., 2012, 24(9): 1176-1181. [66] MA G, WEN Z, JIN J, et al. Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014, 2(27): 10350-10354. [67] WU F, WU S X, CHEN R J, et al. Sulfur-polythiophene composite cathode materials for rechargeable lithium batteries[J]. Electrochemical and Solid State Letters, 2010, 13(4): A29-A31. [68] LI W Y, ZHANG Q F, ZHENG G Y, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance[J]. Nano Lett., 2013, 13(11): 5534-5540. [69] SONG J X, XU T, GORDIN M L, et al. Nitrogen- doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal- capacity sulfur cathode with exceptional cycling stability for lithium- sulfur batteries[J]. Adv. Funct. Mater., 2014, 24(9): 1243-1250. [70] WANG C, SU K, WAN W, et al. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries[J]. J. Mater. Chem. A, 2014, 2(14): 5018-5023. [71] TAO X, WANG J, YING Z, et al. Strong sulfur binding with conducting magneli-phase TinO2(n1) nanomaterials for improving lithium-sulfur batteries[J]. Nano Lett., 2014, 14(9): 5288-5294. [72] PANG Q, KUNDU D, CUISINIER M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nat. Commun., 2014, 5: 4759-4766. [73] LIANG X, HART C, PANG Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nat. Commun., 2015, 6: 5682-5689. [74] LIANG X, GARSUCH A, NAZAR L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angew. Chem.-Int. Edit., 2015, 54(13): 3907-3911. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[3] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[4] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[5] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[6] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[7] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[8] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[9] | 肖哲熙, 鲁峰, 林贤清, 张晨曦, 白浩隆, 于春辉, 何姿颖, 姜海容, 魏飞. 气固流化床硅氧碳负极材料的宏量制备[J]. 储能科学与技术, 2022, 11(6): 1739-1748. |
[10] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[11] | 石鹏, 翟喜民, 杨贺捷, 赵辰孜, 闫崇, 别晓非, 姜涛, 张强. 实用化复合锂负极研究进展[J]. 储能科学与技术, 2022, 11(6): 1725-1738. |
[12] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[13] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[14] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[15] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||