储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1788-1805.doi: 10.19799/j.cnki.2095-4239.2022.0168
周伟东(), 黄秋, 谢晓新, 陈科君, 李薇, 邱介山()
收稿日期:
2022-03-29
修回日期:
2022-05-11
出版日期:
2022-06-05
发布日期:
2022-06-13
通讯作者:
邱介山
E-mail:zhouwd@mail.buct.edu.cn;qiujs@mail.buct.edu.cn
作者简介:
周伟东(1981—),男,教授,研究方向为固态电池,E-mail:zhouwd@mail.buct.edu.cn;
基金资助:
ZHOU Weidong(), HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan()
Received:
2022-03-29
Revised:
2022-05-11
Online:
2022-06-05
Published:
2022-06-13
Contact:
QIU Jieshan
E-mail:zhouwd@mail.buct.edu.cn;qiujs@mail.buct.edu.cn
摘要:
目前锂离子电池的关键挑战是如何提高电池的能量密度和电池的安全性,使用固态电解质的固态锂电池可以有效地缓解这两个问题。固态电解质是固态电池发展的关键材料。固态聚合物电解质(solid-state-polymer electrolyte,SPE)具有较高的柔韧性、优良的加工性和良好的界面接触性,是固态锂金属电池理想的电解质材料。SPE的离子导电性、电化学窗口以及与电极之间界面的稳定性对固态锂电池的综合性能起着至关重要的作用。根据电化学稳定窗口的不同,本文主要综述了:①低电压稳定SPE,与锂金属具有良好的相容性,通过交联、共混、共聚以及与无机填料复合的方法可以有效降低其结晶度,提升聚合物离子电导率;②高电压稳定SPE体系,能够匹配高电压正极使用,有效提高锂金属电池的能量密度;③多层结构SPE体系,能够同时承受锂金属负极的还原和高电压正极的氧化,为进一步开发高性能SPE和提高电池能量密度提供了新思路。最后,对三种SPE体系进行了总结和展望,指出低电压稳定SPE的研究重点在于提高离子电导率以及力学性能,高电压稳定SPE的关键在于降低材料的最高占据分子轨道(highest occupied molecular orbital,HOMO)以及建立正极界面处稳定的CEI层,多层SPE的研究重点在于合适的电池和电极结构设计。构建可与正、负极同时稳定或者同时形成界面钝化层的高导离子聚合物结构是未来的研究重点之一。
中图分类号:
周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805.
ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805.
表1
PEO-SPEs离子电导率及电化学窗口"
类型 | 聚合物电解质 | 离子电导率/(S/cm) | 电化学窗口/V | 文献 |
---|---|---|---|---|
有机-无机复合 | PEO/LiClO4 | 1.0×10-8 (35 ℃) 5×10-4 (80 ℃) | — | [ |
PEO/LiClO4/10%TiO2 | 8×10-5 (35 ℃) 1×10-3 (80 ℃) | |||
PEO/LiClO4/10%Al2O3 | 5×10-5 (35 ℃) 2×10-3 (80 ℃) | |||
PEO/LiCF3SO3/5%SiO2 | 8.2×10-7 (30 ℃) 1.7×10-4 (70 ℃) | — | [ | |
PEO/LLZTO | 2.1×10-4 (30 ℃) 5.6×10-4 (60 ℃) | 4.75 | [ | |
PEO/LiTFSI/Al2O3 | 4.4×10-5 (30 ℃) 3.1×10-4 (60 ℃) | >4 | [ | |
PEO/LiTFSI/LiZr2(PO4)3 | 1.2×10-4 (30 ℃) 2.1×10-3 (60 ℃) | >4.5 | ||
PEO/LiTFSI/LLTO | 8.8×10-5 (25 ℃) | 4.5 | [ | |
PEO/16%Ga-LLZO | 7.2×10-5 (30 ℃) 4.1×10-4 (60 ℃) | 4.6 | [ | |
交联或共聚 | PEO/LiFSI/30%C2epyrFSI① | 3.02×10-4 (50 ℃) | 5.1 | [ |
PEO@AF② SPE | 6.57×10-4 (80 ℃) | 5.2 | [ | |
3PEO-7LATP-xBMP-TFSI③ | 2.42×10-4 (30 ℃) | 5 | [ | |
PEO/PVP/LiClO4 | 2.31×10-6 (30 ℃) | — | [ | |
使用不同锂盐 | P(EO)20/LiBF4 | 6.32×10-7 (50 ℃) | — — | [ |
P(EO)20/LiClO4 | 2.78×10-7 (50 ℃) | |||
PEO/LiTFSI | 7.71×10-7 (30 ℃) | 3.8 | [ | |
PEO-LiBOB | >10-6 (30 ℃) >10-4 (70 ℃) | — | [ |
表2
PS-SPE的离子电导率及电化学窗口"
类型 | 聚合物电解质 | 离子电导率/(S/cm) | 电化学窗口/V | 文献 |
---|---|---|---|---|
接枝 | VTMS-PMHS/LiPF6 | 1.12×10-3 (25 ℃) | >4.0 | [ |
VC-PMHS/PVDF/LiTFSI | 1.55×10-4 (25 ℃) | 4.9 | [ | |
ABPTP80/LiTFSI | 4.0×10-4 (60 ℃) | >4.5 | [ | |
交联 | PSi-S-CN/LiTFSI | 4.8×10-5 (60 ℃) | 3.95 | [ |
CSPE-BFs/LiTFSI | 1.3×10-4 (60 ℃) | 5 | [ | |
PSi-g-CN/LiClO4 | 1.15×10-5 (20 ℃) 1×10-4 (60 ℃) | 5 | [ | |
共聚(共混) | P(DMS-co-nEO)/LiClO4 | 2.6×10-4 (25 ℃) | 5 | [ |
D m CS n /LiTFSI | 1.15×10-4 (25 ℃) | 4.5 | [ | |
POEM-g-PMDS/LiCF3SO3 | 9×10-6 (25 ℃) 6×10-5 (60 ℃) | >4 | [ |
1 | LI H. Practical evaluation of Li-ion batteries[J]. Joule, 2019, 3(4): 911-914. |
2 | YE H, XIN S, YIN Y X, et al. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons[J]. Journal of the American Chemical Society, 2017, 139(16): 5916-5922. |
3 | ZHOU B H, HE D, HU J, et al. A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(25): 11725-11733. |
4 | ZHAO N, KHOKHAR W, BI Z J, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190-1199. |
5 | CHEN S J, XIE D J, LIU G Z, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74. |
6 | XU J R, LI Y X, LU P S, et al. Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer[J]. Advanced Energy Materials, 2022, 12(2): doi:10.10021aenm.202102348. |
7 | LI X N, LIANG J W, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy & Environmental Science, 2019, 12(9): 2665-2671. |
8 | CHEN G H, YE L, ZHANG K, et al. Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries[J]. Chemical Engineering Journal, 2020, 394: doi:10.1016/j.cej.2020.124885 |
9 | FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589. |
10 | BERTHIER C, GORECKI W, MINIER M, et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11(1): 91-95. |
11 | NAGAOKA K, NARUSE H, SHINOHARA I, et al. High ionic conductivity in poly (dimethyl siloxane-co-ethylene oxide) dissolving lithium perchlorate[J]. Journal of Polymer Science: Polymer Letters Edition, 1984, 22(12): 659-663. |
12 | WATANABE M, TOGO M, SANUI K, et al. Ionic conductivity of polymer complexes formed by poly (β-propiolactone) and lithium perchlorate[J]. Macromolecules, 1984, 17(12): 2908-2912. |
13 | WATANABE M, TOGO M, SANUI K, et al. Ionic conductivity of polymer complexes formed by poly (β-propiolactone) and lithium perchlorate[J]. Macromolecules, 1984, 17(12): 2908-2912. |
14 | BANNISTER D J, DAVIES G R, WARD I M, et al. Ionic conductivities of poly (methoxy polyethylene glycol monomethacrylate) complexes with LiSO3CH3[J]. Polymer, 1984, 25(11): 1600-1602. |
15 | ALAMGIR M, MOULTON R D, ABRAHAM K M. Li+-conductive polymer electrolytes derived from poly (1,3-dioxolane) and polytetrahydrofuran[J]. Electrochimica Acta, 1991, 36(5/6): 773-782. |
16 | BLONSKY P M, SHRIVER D F, AUSTIN P, et al. Polyphosphazene solid electrolytes[J]. Journal of the American Chemical Society, 1984, 106(22): 6854-6855. |
17 | WEI X Y, SHRIVER D F. Highly conductive polymer electrolytes containing rigid polymers[J]. Chemistry of Materials, 1998, 10(9): 2307-2308. |
18 | SMITH M J, SILVA M M, CERQUEIRA S, et al. Preparation and characterization of a lithium ion conducting electrolyte based on poly (trimethylene carbonate)[J]. Solid State Ionics, 2001, 140(3/4): 345-351. |
19 | YU X Y, XIAO M, WANG S J, et al. Fabrication and characterization of PEO/PPC polymer electrolyte for lithium-ion battery[J]. Journal of Applied Polymer Science, 2010, 115(5): 2718-2722. |
20 | HU P, DUAN Y L, HU D P, et al. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4720-4727. |
21 | ZHOU W D, WANG Z X, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Advanced Materials, 2019, 31(4): doi:10.10021adma.201805574.. |
22 | 刘如亮, 高兴远, 尹伟, 等. PVDF-HFP基凝胶固态聚合物电解质的合成与锂离子电池性能[J]. 储能科学与技术, 2021, 10(6): 2077-2081. |
LIU R L, GAO X Y, YIN W, et al. Synthesis of PVDF-HFP based gel polymer electrolyte and study of lithium ion battery performance[J]. Energy Storage Science and Technology, 2021, 10(6): 2077-2081. | |
23 | XUE Z G, HE D, XIE X L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. |
24 | MYUNG S T, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223. |
25 | FENG J N, WANG L, CHEN Y J, et al. PEO based polymer-ceramic hybrid solid electrolytes: A review[J]. Nano Convergence, 2021, 8(1): 2. |
26 | QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5): 2525-2540. |
27 | MEYER W H. Polymer electrolytes for lithium-ion batteries[J]. Advanced Materials, 1998, 10(6): 439-448. |
28 | CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458. |
29 | KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402. |
30 | APPETECCHI G B, CROCE F, HASSOUN J, et al. Hot-pressed, dry, composite, PEO-based electrolyte membranes: I. ionic conductivity characterization[J]. Journal of Power Sources, 2003, 114(1): 105-112. |
31 | ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454. |
32 | WU N, CHIEN P H, LI Y T, et al. Fast Li+conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte[J]. Journal of the American Chemical Society, 2020, 142(5): 2497-2505. |
33 | BAE J, LI Y T, ZHANG J, et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte[J]. Angewandte Chemie International Edition, 2018, 57(8): 2096-2100. |
34 | LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 784-791. |
35 | FANG Z Q, ZHAO M, PENG Y, et al. Organic ionic plastic crystal enhanced interface compatibility of PEO-based solid polymer electrolytes for lithium-metal batteries[J]. Solid State Ionics, 2021, 373: doi:10.1016/j.ssi.2021.115806. |
36 | ZENG F Y, SUN Y Y, HUI B, et al. Three-dimensional porous alginate fiber membrane reinforced PEO-based solid polymer electrolyte for safe and high-performance lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43805-43812. |
37 | ZHANG D C, XU X J, HUANG X Y, et al. A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(35): 18043-18054. |
38 | KESAVAN K, MATHEW C M, RAJENDRAN S, et al. Solid Polymer Blend Electrolyte Based on Poly (ethylene oxide) and Poly (vinyl pyrrolidone) for Lithium Secondary Batteries[J]. Brazilian Journal of Physics, 2015, 45(1): 19-27. |
39 | CHOUDHARY S, SENGWA R J. Effect of different anions of lithium salt and MMT nanofiller on ion conduction in melt-compounded PEO-LiX-MMT electrolytes[J]. Ionics, 2012, 18(4): 379-384. |
40 | ZHANG N, HE J W, HAN W M, et al. Composite solid electrolyte PEO/SN/LiAlO2 for a solid-state lithium battery[J]. Journal of Materials Science, 2019, 54(13): 9603-9612. |
41 | APPETECCHI G B, ZANE D, SCROSATI B. PEO-based electrolyte membranes based on LiBC4O8 salt[J]. Journal of the Electrochemical Society, 2004, 151(9): A1369. |
42 | AIHARA Y, KURATOMI J, BANDO T, et al. Investigation on solvent-free solid polymer electrolytes for advanced lithium batteries and their performance[J]. Journal of Power Sources, 2003, 114(1): 96-104. |
43 | NAVA D P, GUZMÁN G, VAZQUEZ-ARENAS J, et al. An experimental and theoretical correlation to account for the effect of LiPF6 concentration on the ionic conductivity of poly (poly (ethylene glycol) methacrylate)[J]. Solid State Ionics, 2016, 290: 98-107. |
44 | CARDOSO J, SORIA-ARTECHE O, VÁZQUEZ G, et al. Synthesis and characterization of zwitterionic polymers with a flexible lateral chain[J]. The Journal of Physical Chemistry C, 2010, 114(33): 14261-14268. |
45 | WANG S, ZHANG L, ZENG Q H, et al. Cellulose microcrystals with brush-like architectures as flexible all-solid-state polymer electrolyte for lithium-ion battery[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3200-3207. |
46 | KALE S B, NIRMALE T C, KHUPSE N D, et al. Cellulose-derived flame-retardant solid polymer electrolyte for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(4): 1559-1567. |
47 | MUNCH ELMÉR A, JANNASCH P. Solid electrolyte membranes from semi-interpenetrating polymer networks of PEG-grafted polymethacrylates and poly(methyl methacrylate)[J]. Solid State Ionics, 2006, 177(5/6): 573-579. |
48 | LIU Q, CAI B Y, LI S, et al. Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte[J]. Journal of Materials Chemistry A, 2020, 8(15): 7197-7204. |
49 | MA Q, YUE J P, FAN M, et al. Formulating the electrolyte towards high-energy and safe rechargeable lithium-metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(30): 16554-16560. |
50 | LI W, GAO J, TIAN H Y, et al. SnF2-catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior[J]. Angewandte Chemie International Edition, 2022, 61(6): doi:10.1002/ange.202114805. |
51 | KUO S W, CHANG F C. POSS related polymer nanocomposites[J]. Progress in Polymer Science, 2011, 36(12): 1649-1696. |
52 | WANG Q L, ZHANG H R, CUI Z L, et al. Siloxane-based polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2019, 23: 466-490. |
53 | LONG L Z, WANG S J, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. |
54 | WALKOWIAK M, SCHROEDER G, GIERCZYK B, et al. New lithium ion conducting polymer electrolytes based on polysiloxane grafted with Si-tripodand centers[J]. Electrochemistry Communications, 2007, 9(7): 1558-1562. |
55 | LIN Y, LI J, LAI Y Q, et al. A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries[J]. RSC Advances, 2013, 3(27): 10722. |
56 | SHIM J, KIM L, KIM H J, et al. All-solid-state lithium metal battery with solid polymer electrolytes based on polysiloxane crosslinked by modified natural Gallic acid[J]. Polymer, 2017, 122: 222-231. |
57 | FU C Y, IACOB M, SHEIMA Y, et al. A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(19): 11794-11801. |
58 | HONG D G, BAIK J H, KIM S, et al. Solid polymer electrolytes based on polysiloxane with anion-trapping boron moieties for all-solid-state lithium metal batteries[J]. Polymer, 2022, 240: doi:10.1016/j.polymer.2022.124517. |
59 | LEE Y S, SONG G S, KANG Y K, et al. The polymer electrolyte based on polysiloxane containing both alkyl cyanide and oligo ethylene oxide pendants[J]. Electrochimica Acta, 2004, 50(2/3): 311-316. |
60 | FONSECA C P, NEVES S. Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide)[J]. Journal of Power Sources, 2002, 104(1): 85-89. |
61 | WANG F M, HU C C, LO S C, et al. The investigation of electrochemical properties and ionic motion of functionalized copolymer electrolytes based on polysiloxane[J]. Solid State Ionics, 2009, 180(4/5): 405-411. |
62 | TRAPA P E, WON Y Y, MUI S C, et al. Rubbery graft copolymer electrolytes for solid-state, thin-film lithium batteries[J]. Journal of the Electrochemical Society, 2005, 152(1): A1. |
63 | CHEN L, FAN L Z. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials, 2018, 15: 37-45. |
64 | FISCHER F, HAHN T, BÄSSLER H, et al. Measuring reduced C60 diffusion in crosslinked polymer films by optical spectroscopy[J]. Advanced Functional Materials, 2014, 24(39): 6172-6177. |
65 | 王星星, 宋子钰, 吴浩, 等. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4): 1226-1235. |
WANG X X, SONG Z Y, WU H, et al. Advances in conducting lithium salts for solid polymer electrolytes[J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. | |
66 | FONSECA C P, ROSA D S, GABOARDI F, et al. Development of a biodegradable polymer electrolyte for rechargeable batteries[J]. Journal of Power Sources, 2006, 155(2): 381-384. |
67 | LIN C K, WU I D. Investigating the effect of interaction behavior on the ionic conductivity of Polyester/LiClO4 blend systems[J]. Polymer, 2011, 52(18): 4106-4113. |
68 | ZHANG J J, ZHAO J H, YUE L P, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5(24): doi:10.1002/aenm.201501082. |
69 | CHAI J C, LIU Z H, MA J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2017, 4(2): doi:10.1002/adv.201600377. |
70 | LIU J, SHEN X W, ZHOU J Q, et al. Nonflammable and high-voltage-tolerated polymer electrolyte achieving high stability and safety in 4.9 V-class lithium metal battery[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45048-45056. |
71 | MA M Y, SHAO F, WEN P, et al. Designing weakly solvating solid main-chain fluoropolymer electrolytes: Synergistically enhancing stability toward Li anodes and high-voltage cathodes[J]. ACS Energy Letters, 2021, 6(12): 4255-4264. |
72 | CUI Y Y, CHAI J C, DU H P, et al. Facile and reliable in situ polymerization of poly(ethylcyanoacrylate)-based polymer electrolytes toward flexible lithium batteries[J]. ACS Applied Materials Interfaces, 2017, 9(10): 8737-8741. |
73 | SUN H, XIE X X, HUANG Q, et al. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries[J]. Angewandte Chemie International Edition, 2021, 60(33): 18335-18343. |
74 | LU J Z, ZHOU J H, CHEN R S, et al. 4.2 V poly (ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance[J]. Energy Storage Materials, 2020, 32: 191-198. |
75 | QIU J L, LIU X Y, CHEN R S, et al. Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte[J]. Advanced Functional Materials, 2020, 30(22): doi:10.1002/adfm.201909392. |
76 | QIU J L, YANG L F, SUN G C, et al. A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery[J]. Chemical Communications, 2020, 56: 5633-5636. |
77 | ZHOU W D, WANG Z X, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Advanced Materials, 2019, 31(4): doi:10.1002/adma.201805574. |
78 | WANG C, WANG T, WANG L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high‐voltage solid‐state lithium metal battery[J]. Advanced Science, 2019, 6: doi:10.1002/adv.201901036. |
79 | DUAN H, FAN M, CHEN W P, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J]. Advanced Materials, 2019, 31(12): doi:10.10021/adma.201807789. |
80 | YU X W, LI J Y, MANTHIRAM A. Rational design of a laminated dual-polymer/polymer-ceramic composite electrolyte for high-voltage all-solid-state lithium batteries[J]. ACS Materials Letters, 2020, 2(4): 317-324. |
81 | PAN X Y, SUN H, WANG Z X, et al. High voltage stable polyoxalate catholyte with cathode coating for all-solid-state Li-metal/NMC622 batteries[J]. Advanced Energy Materials, 2020, 10(42): doi:10.1002/aenm.202002416. |
[1] | 王星星, 宋子钰, 吴浩, 冯文芳, 周志彬, 张恒. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4): 1226-1235. |
[2] | 汤匀, 岳芳, 郭楷模, 李岚春, 柯旺松, 陈伟. 全固态锂电池技术发展趋势与创新能力分析[J]. 储能科学与技术, 2022, 11(1): 359-369. |
[3] | 刘如亮, 高兴远, 尹伟, 杨乃涛. PVDF-HFP基凝胶固态聚合物电解质的合成与锂离子电池性能[J]. 储能科学与技术, 2021, 10(6): 2077-2081. |
[4] | 蒋苗, 万红利, 刘高瞻, 翁伟, 王超, 姚霞银. Co0.1Fe0.9S2@Li7P3S11正极材料的制备及其在全固态锂电池中的性能[J]. 储能科学与技术, 2021, 10(3): 925-930. |
[5] | 翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁. 溶剂热法合成三维花瓣状石榴石型固态电解质及其在固态聚合物电解质中的应用[J]. 储能科学与技术, 2021, 10(3): 905-913. |
[6] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[7] | 崔言明, 张秩华, 黄园桥, 林久, 姚霞银, 许晓雄. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3): 836-847. |
[8] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. |
[9] | 温荣严, 高志浩, 门树林, 戴作强, 张健敏. 聚偏氟乙烯基凝胶聚合物电解质的研究进展[J]. 储能科学与技术, 2021, 10(1): 40-49. |
[10] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
[11] | 屈晨滢, 侯朝霞, 王晓慧, 王健, 王凯, 李思瑶. 凝胶聚合物电解质在固态超级电容器中的研究进展[J]. 储能科学与技术, 2020, 9(3): 776-783. |
[12] | 黄晓, 吴林斌, 黄祯, 林久, 许晓雄. 锂离子固体电解质研究中的电化学测试方法[J]. 储能科学与技术, 2020, 9(2): 479-500. |
[13] | 吴敬华, 姚霞银. 基于硫化物固体电解质全固态锂电池界面特性研究进展[J]. 储能科学与技术, 2020, 9(2): 501-514. |
[14] | 孙兴伟, 王龙龙, 姜丰, 马君, 周新红, 崔光磊. 固态聚合物锂电池失效机制及其表征技术[J]. 储能科学与技术, 2019, 8(6): 1024-1032. |
[15] | 毛建昭, 高慧慧, 薛润萍, 杨晨, 刘鹏清, 徐建军, 陈胜, 姜猛进. 聚芳噁二唑磺酸锂聚合物电解质的制备与性能[J]. 储能科学与技术, 2019, 8(2): 304-310. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||