储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 836-847.doi: 10.19799/j.cnki.2095-4239.2021.0090
崔言明1(), 张秩华2, 黄园桥1, 林久1, 姚霞银2, 许晓雄1,2,3()
收稿日期:
2021-03-10
修回日期:
2021-04-03
出版日期:
2021-05-05
发布日期:
2021-04-30
通讯作者:
许晓雄
E-mail:cuiyanming@ganfeng lithium.com;xuxiaoxiong@ganfenglithium.com
作者简介:
崔言明(1986—),男,博士,高级工程师,主要研究方向为高能量密度锂电池与全固态锂电池,E-mail:基金资助:
Yanming CUI1(), Zhihua ZHANG2, Yuanqiao HUANG1, Jiu LIN1, Xiayin YAO2, Xiaoxiong XU1,2,3()
Received:
2021-03-10
Revised:
2021-04-03
Online:
2021-05-05
Published:
2021-04-30
Contact:
Xiaoxiong XU
E-mail:cuiyanming@ganfeng lithium.com;xuxiaoxiong@ganfenglithium.com
摘要:
全固态锂电池由于具有安全性高、循环寿命长、能量密度高等特点,在化学电源领域具有非常好的应用前景。因全固态锂电池是一种使用固体电极材料和固体电解质材料,不含任何液体的锂电池,所以全固态锂电池的电极制备以及组装与现有液态锂电池的方法存在较大差异。本文详细综述了典型的几类全固态锂电池的电极制备与组装方法及相应的性能特征,分别针对氧化物、硫化物以及聚合物固体电解质体系,归纳分析其结构、正极制备方法、负极修饰方法以及电池组装方式,并在最后对全固态锂电池的实验室开发组装方式给出了建议,为全固态电池研究的同行们提供借鉴和参考。
中图分类号:
崔言明, 张秩华, 黄园桥, 林久, 姚霞银, 许晓雄. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3): 836-847.
Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology[J]. Energy Storage Science and Technology, 2021, 10(3): 836-847.
1 | 李泓. 全固态锂电池: 梦想照进现实[J]. 储能科学与技术, 2018, 7(2): 188-193.LI H. All solid state battery: Dream into reality[J]. Energy Storage Science and Technology, 2018, 7(2): 188-193. |
2 | JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016. 1(9): 16141-16144. |
3 | PALACÍN M R. Recent advances in rechargeable battery materials: A chemist's perspective[J]. Chemical Society Reviews, 2009, 38(9): 2565-2575. |
4 | 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(4): 331-340, 341.XU X X, QIU Z J, GUAN Y B, et al. All-solid-state lithium-ion batteries: State-of-the-art development and perspective[J]. Energy Storage Science and Technology, 2013, 2(4): 331-340, 341. |
5 | OHTA S, KOMAGATA S, SEKI J, et al. Short communication all-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing[J]. Journal of Power Sources, 2013, 238: 53-56. |
6 | OKUMURA T, TAKEUCHI T, KOBAYASHI H. All-solid-state lithium-ion battery using Li2.2C0.8B0.2O3 electrolyte[J]. Solid State Ionics, 2016, 288: 248-252. |
7 | HAN F, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2: 497-508. |
8 | OHTA S, SEKI J, YAGI Y, et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery[J]. Journal of Power Sources, 2014, 265: 40-44. |
9 | LI F Z, LI J X, ZHU F. Atomically intimate contact between solid electrolytes and electrodes for Li batteries[J]. Matter, 2019, 1(4): 1001-1016. |
10 | ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): doi: 10.1002/adma.201902029. |
11 | OHTA S, KOBAYASHI T, SEKI J, et al. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. Journal of Power Sources, 2012, 202: 332-335. |
12 | YUBUCHI S, ITO Y, MATSUYAMA T, et al. 5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte[J]. Solid State Ionics, 2016, 285: 79-82. |
13 | ZHANG Z H, CHEN S J, YAO X Y, et al. Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte architectures[J]. Energy Storage Materials, 2020, 24: 714-718. |
14 | FU K, GONG Y, HITZ G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017, 10(7): 1568-1575. |
15 | YI E, SHEN H, HEYWOOD S, et al. All-solid-state batteries using rationally designed garnet electrolyte frameworks[J]. ACS Applied Energy Materials, 2020, 3(1): 170-175. |
16 | SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. |
17 | ZHAMU A, CHEN G R, LIU C G, et al. Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells[J]. Energy and Environmental Science, 2012, 5(2): 5701-5707. |
18 | SHEN Y B, ZHANG Y T, HAN S J, et al. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes[J]. Joule, 2018, 2(9): 1674-1689. |
19 | XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy and Environmental Science, 2014, 7(2): 513-537. |
20 | WEST W C, WHITACRE J F, LIM J R. Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films[J]. Journal of Power Sources, 2004, 126(1/2): 134-138. |
21 | ZHAO S L, FU Z W, QIN Q Z. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition[J]. Thin Solid Films, 2002, 415(1/2): 108-113. |
22 | LIU Y J, LI C, LI B J, et al. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries[J]. Advanced Energy Materials, 2018, 8(16): doi: 10.1002/aenm. 201702374. |
23 | TANG W, YIN X, KANG S, et al. Lithium silicide surface enrichment: A solution to lithium metal battery[J]. Advanced Materials, 2018, doi: 10.1002/adma. 201801745. |
24 | DU M J, LIAO K M, LU Q, et al. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: Challenges, materials, construction, and characterization[J]. Energy & Environmental Science, 2019, 12(6): 1780-1804. |
25 | ZHANG Z H, ZHAO Y R, CHEN S J, et al. An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life[J]. Journal of Materials Chemistry A, 2017, 5(32): 16984-16993. |
26 | ZHANG Z H, CHEN S H, YANG J, et al. Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode[J]. Electrochimica Acta, 2019, 297: 281-287. |
27 | ZHAO C Z, ZHANG X Q, CHENG X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11069-11074. |
28 | ZHANG Z Z, SHAO Y J, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976. |
29 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
30 | TAN D, WU E A, NGUYEN H, et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte[J]. ACS Energy Letters, 2019, 4(10): 2418-2427. |
31 | OH D Y, NAM Y J, PARK K H, et al. Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids[J]. Advanced Energy Materials, 2019, 9(16): doi: 10.1002/aenm.201802927. |
32 | ZHANG X, LIU T, ZHANG S F, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785. |
33 | VAIL J R, KRICK B A, MARCHMAN K R, et al. Polytetrafluoroethylene (PTFE) fiber reinforced polyetheretherketone (PEEK) composites[J]. Wear, 2011, 270(11/12): 737-741. |
34 | HIPPAUF F, SCHUMM B, DOERFLER S, et al. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach[J]. Energy Storage Materials, 2019, 21: 390-398. |
35 | DUONG H, SHIN J, YUDI Y. Dry electrode coating technology[C]//48th Power Sources Conference, 2018. |
36 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5: 299-308. |
37 | ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. |
38 | WAN H L, PENG G, YAO X Y, et al. Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode[J]. Energy Storage Materials, 2016, 4: 59-65. |
39 | YAO X Y, HUANG N, HAN F D, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm201602923. |
40 | GAO Y, WANG D W, LI Y G, et al. Salt-based organic-inorganic nanocomposites: Towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface[J]. Angewandte Chemie, 2018, 57(41): 13608-13612. |
41 | CHIEN P H, FENG X Y, TANG M X, et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI[J]. The Journal of Physical Chemistry Letters, 2018, 9(8): 1990-1998. |
42 | WANG C H, ZHAO Y, SUN Q, et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition[J]. Nano Energy, 2018, 53: 168-174. |
43 | ZHAO Y R, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. Journal of Power Sources, 2016, 301: 47-53. |
44 | KIM W, CHO J J, KANG Y K, et al. Study on cycling performances of lithium-ion polymer cells assembled by in situ chemical cross-linking with star-shaped siloxane acrylate[J]. Journal of Power Sources, 2008, 178(2): 837-841. |
45 | XU J J, YE H. Polymer gel electrolytes based on oligomeric polyether/cross-linked PMMA blends prepared viain situ polymerization[J]. Electrochemistry Communications, 2005, 7(8): 829-835. |
46 | WEI Z Y, CHEN S J, WANG J Y, et al. A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode[J]. Journal of Power Sources, 2018, 394: 57-66. |
47 | ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120. |
48 | CHEN L, LI Y T, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184. |
49 | 张建军, 董甜甜, 杨金凤, 等. 全固态聚合物锂电池的科研进展、挑战与展望[J]. 储能科学与技术, 2018, 7(5): 861-868.ZHANG J J, DONG T T, YANG J F, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 861-868. |
50 | EBADI M, MARCHIORI C, MINDEMARK J, et al. Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations[J]. Journal of Materials Chemistry A, 2019, 7(14): 8394-8404. |
51 | ZHOU W D, WANG Z X, PU Y, et al. Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries[J]. Advanced Materials, 2019, 31(4): doi: 10.1002/adma.201805574. |
52 | WANG C, WANG T, WANG L L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery[J]. Advanced Science, 2019, 6(22): doi: 10.1002/advs. 201901036. |
53 | YANG H C, ZHANG Y M, TENNENBAUM M J, et al. Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid polymer lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27906-27912. |
54 | DUAN H, FAN M, CHEN W P, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries[J]. Advanced Materials, 2019, 31(12): doi: 10. 1002/adma. 201807789. |
55 | WU N, LI Y T, DOLOCAN A, et al. In situ formation of Li3P layer enables fast Li+ conduction across Li/solid polymer electrolyte interface[J]. Advanced Functional Materials, 2020, 30(22): doi:10.1002/adfm. 202000831. |
56 | LIU Q, CAI B Y, LI S, et al. Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte[J]. Journal of Materials Chemistry A, 2020, 8(15): 7197-7204. |
57 | JIANG T L, HE P G, WANG G X, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials, 2020, 10(12): doi: 10.1002/aenm. 201903376. |
58 | CHENG X B, YAN C, CHEN X, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017, 2(2): 258-270. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[6] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[7] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[8] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[9] | 王苏杭, 李建林, 李雅欣, 熊俊杰, 曾伟. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
[10] | 郑征, 王肖帅, 李斌, 黄涛, 李佩柯. 基于三绕组变压器的锂电池组自适应交错控制均衡方案[J]. 储能科学与技术, 2022, 11(4): 1131-1140. |
[11] | 王星星, 宋子钰, 吴浩, 冯文芳, 周志彬, 张恒. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4): 1226-1235. |
[12] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[13] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[14] | 陈博文, 崔瑞广, 沈炎宾, 陈立桅. 杨氏模量微观表征新方法在锂电池中的应用[J]. 储能科学与技术, 2022, 11(3): 991-999. |
[15] | 余春林, 陈旭东, 宫川敏夫, 孙辉, 张兴旺, 童莉葛. 特殊结构前驱体对锂电池三元正极材料性能的提升[J]. 储能科学与技术, 2022, 11(3): 1000-1007. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||