1 |
LEE W, MUHAMMAD S, SERGEY C, et al. Advances in the cathode materials for lithium rechargeable batteries[J]. Angewandte Chemie, 2020, 59(7): 2578-2605.
|
2 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
|
3 |
陈晓轩, 李晟, 胡泳钢, 等. 锂离子电池三元层状氧化物正极材料失效模式分析[J]. 储能科学与技术, 2019, 8(6): 1003-1016.
|
|
CHEN X X, LI S, HU Y G, et al. Failure mechanism of Li1+ x(NCM)1- xO2 layered oxide cathode material during capacity degradation[J]. Energy Storage Science and Technology, 2019, 8(6): 1003-1016.
|
4 |
CHA H, KIM J, LEE H, et al. Boosting reaction homogeneity in high-energy lithium-ion battery cathode materials[J]. Advanced Materials, 2020, 32(39): doi: 10.1002/adma.202003040.
|
5 |
李文挺, 安胜利, 邱新平. 钾离子电池关键材料的研究进展[J]. 储能科学与技术, 2018, 7(3): 365-375.
|
|
LI W T, AN S L, QIU X P. Research on key materials for potassium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(3): 365-375.
|
6 |
李雨, 赵慧春, 白莹, 等. 高能量密度层状富锂锰基正极材料的改性研究进展[J]. 储能科学与技术, 2018, 7(3): 394-403.
|
|
LI Y, ZHAO H C, BAI Y, et al. Progress in the modification of lithium-rich manganese-based layered cathode material[J]. Energy Storage Science and Technology, 2018, 7(3): 394-403.
|
7 |
NISAR U, MURALIDHARAN N, ESSEHLI R, et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials[J]. Energy Storage Materials, 2021, 38: 309-328.
|
8 |
ZHANG M L, ZHAO H Y, TAN M, et al. Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage[J]. Journal of Alloys and Compounds, 2019, 774: 82-92.
|
9 |
ZHANG Y D, LI Y, XIA X H, et al. High-energy cathode materials for Li-ion batteries: A review of recent developments[J]. Science China Technological Sciences, 2015, 58(11): 1809-1828.
|
10 |
KIM U H, RYU H H, KIM J H, et al. Microstructure-controlled Ni-rich cathode material by microscale compositional partition for next-generation electric vehicles[J]. Advanced Energy Materials, 2019, 9(15): doi: 10.1002/aenm.201803902.
|
11 |
NAM K M, KIM H J, KANG D H, et al. Ammonia-free coprecipitation synthesis of a Ni-Co-Mn hydroxide precursor for high-performance battery cathode materials[J]. Green Chemistry, 2015, 17(2): 1127-1135.
|
12 |
SHEN Y B, WU Y Q, XUE H J, et al. Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 717-726.
|
13 |
RYU H H, PARK N Y, NOH T C, et al. Microstrain alleviation in high-energy Ni-rich NCMA cathode for long battery life[J]. ACS Energy Letters, 2021, 6(1): 216-223.
|
14 |
LIANG L W, DU K, PENG Z D, et al. Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries[J]. Electrochimica Acta, 2014, 130: 82-89.
|
15 |
YANG Y, XU S M, XIE M, et al. Growth mechanisms for spherical mixed hydroxide agglomerates prepared by co-precipitation method: A case of Ni1/3Co1/3Mn1/3(OH)2[J]. Journal of Alloys and Compounds, 2015, 619: 846-853.
|
16 |
VAN BOMMEL A, DAHN J R. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia[J]. Chemistry of Materials, 2009, 21(8): 1500-1503.
|
17 |
RYU H H, PARK N Y, YOON D R, et al. New class of Ni-rich cathode materials Li[NixCoyB1- x- yO2 for next lithium batteries[J]. Advanced Energy Materials, 2020, 10(25): doi: 10.1002/aenm.202000495.
|
18 |
KWON Y, LEE Y, KIM S O, et al. Conducting polymer coating on a high-voltage cathode based on soft chemistry approach toward improving battery performance[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29457-29466.
|
19 |
CHEN Z, WANG J, CHAO D L, et al. Hierarchical porous LiNi1/3Co1/3Mn1/3O2 nano-/micro spherical cathode material: Minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep25771.
|
20 |
XU X, HUO H, JIAN J Y, et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9(15): doi: 10.1002/aenm. 201803963.
|