储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 991-999.doi: 10.19799/j.cnki.2095-4239.2022.0022
收稿日期:
2022-01-13
修回日期:
2022-01-25
出版日期:
2022-03-05
发布日期:
2022-03-11
通讯作者:
沈炎宾
E-mail:bwchen2019@sinano.ac.cn;ybshen2017@sinano.ac.cn
作者简介:
陈博文(1996—),男,硕士研究生,研究方向为锂离子电池中的离子运动表征,E-mail:基金资助:
Bowen CHEN(), Ruiguang CUI, Yanbin SHEN(), Liwei CHEN
Received:
2022-01-13
Revised:
2022-01-25
Online:
2022-03-05
Published:
2022-03-11
Contact:
Yanbin SHEN
E-mail:bwchen2019@sinano.ac.cn;ybshen2017@sinano.ac.cn
摘要:
锂(离子)电池电极表面的固态电解质中间相(solid electrolyte interphase,SEI)是电池安全性、使用寿命及倍率性能等的关键影响因素。提高SEI的力学性能,如杨氏模量,可以使其更好地包容锂离子脱嵌带来的电极材料体积变化。原子力显微镜(AFM)纳米压痕技术能够在获得样品表面形貌的基础上测量相应区域的杨氏模量,但这种方法通常需要在样品不同区域采集大量的力曲线,才能得到具有统计意义的杨氏模量数值,因此比较费时耗力。最近有文献报道利用AFM中的AM-FM(amplitude modulation-frequency modulation mode)方法可以在短时间内同时获得材料形貌图像和对应区域的杨氏模量,为测量材料杨氏模量提供了一种新思路。由于AM-FM技术尚处于应用的早期,本工作对该模式在锂电池SEI研究中应用的可行性进行了分析。首先,本工作论证了AM-FM技术可以用于快速定性区分同一个样品上的两种模量不同的材料。其次,本工作发现AM-FM模式测得的杨氏模量数值与AFM探针针尖半径密切相关,以特定针尖半径测得的两种标准样品杨氏模量为参考,可以评估用AM-FM模式测量的实验样品杨氏模量结果的准确性。结果表明目前用AM-FM模式获取的实验样品杨氏模量准确度还有待提升。因此,本工作证明了AM-FM可以用于快速定性区分材料的不同成分,未来对AM-FM技术的进一步改进将有望将其应用于快速定量获取样品杨氏模量,助力SEI力学性能的快速表征。
中图分类号:
陈博文, 崔瑞广, 沈炎宾, 陈立桅. 杨氏模量微观表征新方法在锂电池中的应用[J]. 储能科学与技术, 2022, 11(3): 991-999.
Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 991-999.
1 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
2 | VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. |
3 | ZHANG Y G, DU N, YANG D R. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries[J]. Nanoscale, 2019, 11(41): 19086-19104. |
4 | WANG A, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. npj Computational Materials, 2018, 4: doi: 10.1038/S41524-018-0064-0. |
5 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
6 | AGUBRA V A, FERGUS J W. The formation and stability of the solid electrolyte interface on the graphite anode[J]. Journal of Power Sources, 2014, 268: 153-162. |
7 | LIN X D, GU Y, SHEN X R, et al. Correction: An oxygen-blocking oriented multifunctional solid-electrolyte interphase as a protective layer for a lithium metal anode in lithium-oxygen batteries[J]. Energy & Environmental Science, 2021: 1439-1448. |
8 | PELED E, MENKIN S. Review—SEI: Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164(7): A1703-A1719. |
9 | LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858. |
10 | ZHANG Y J, WANG G Y, TANG L, et al. Stable lithium metal anodes enabled by inorganic/organic double-layered alloy and polymer coating[J]. Journal of Materials Chemistry A, 2019, 7(44): 25369-25376. |
11 | ZHOU Y F, SU M, YU X F, et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nature Nanotechnology, 2020, 15(3): 224-230. |
12 | GU Y, WANG W W, LI Y J, et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nature Communications, 2018, 9: doi: 10.1038/S41467-018-03466-8. |
13 | ŠKORO G P, BENNETT J R J, EDGECOCK T R, et al. Dynamic Young's moduli of tungsten and tantalum at high temperature and stress[J]. Journal of Nuclear Materials, 2011, 409(1): 40-46. |
14 | ZHU K, LI C F, ZHU Z G, et al. Measurement of the dynamic Young's modulus of porous titanium and Ti6Al4V[J]. Journal of Materials Science, 2007, 42(17): 7348-7353. |
15 | HOLLMAN P, LARSSON M, HEDENQVIST P, et al. Tensile testing as a method for determining the Young's modulus of thin hard coatings[J]. Surface and Coatings Technology, 1997, 90(3): 234-238. |
16 | BUTT H J, CAPPELLA B, KAPPL M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59(1/2/3/4/5/6): 1-152. |
17 | RICO F, ROCA-CUSACHS P, GAVARA N, et al. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72: doi: 10.1103/PhysRev.72.021914. |
18 | CAPPELLA B, DIETLER G. Force-distance curves by atomic force microscopy[J]. Surface Science Reports, 1999, 34(1/2/3): 1-104. |
19 | FERENCZ R, SANCHEZ J, BLÜMICH B, et al. AFM nanoindentation to determine Young's modulus for different EPDM elastomers[J]. Polymer Testing, 2012, 31(3): 425-432. |
20 | MIYAKE K, SATOMI N, SASAKI S. Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy[J]. Applied Physics Letters, 2006, 89(3): doi: 10.1063/1.2234648. |
21 | OYEN M L. Mechanical characterisation of hydrogel materials[J]. International Materials Reviews, 2014, 59(1): 44-59. |
22 | HU C L, LI Z J. A review on the mechanical properties of cement-based materials measured by nanoindentation[J]. Construction and Building Materials, 2015, 90: 80-90. |
23 | BOWEN W R, LOVITT R W, WRIGHT C J. Application of atomic force microscopy to the study of micromechanical properties of biological materials[J]. Biotechnology Letters, 2000, 22: 893-903. |
24 | ZHANG J, WANG R, YANG X C, et al. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Letters, 2012, 12(4): 2153-2157. |
25 | LIU J, ZHOU J Q, WANG M F, et al. A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(42): 24477-24485. |
26 | SHIN H, PARK J, HAN S, et al. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies[J]. Journal of Power Sources, 2015, 277: 169-179. |
27 | YOON I, JURNG S, ABRAHAM D P, et al. Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries[J]. Energy Storage Materials, 2020, 25: 296-304. |
28 | YUAN S Y, WENG S T, WANG F, et al. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition[J]. Nano Energy, 2021, 83: doi: 10.1016/j.nanoen.2021.105847. |
29 | GAO Y, DU X Q, HOU Z, et al. Unraveling the mechanical origin of stable solid electrolyte interphase[J]. Joule, 2021, 5(7): 1860-1872. |
30 | ZHANG J, YANG X C, WANG R, et al. Influences of additives on the formation of a solid electrolyte interphase on MnO electrode studied by atomic force microscopy and force spectroscopy[J]. The Journal of Physical Chemistry C, 2014, 118(36): 20756-20762. |
31 | WANG M Q, HUAI L Y, HU G H, et al. Effect of LiFSI concentrations to form thickness- and modulus-controlled SEI layers on lithium metal anodes[J]. The Journal of Physical Chemistry C, 2018, 122(18): 9825-9834. |
32 | ZHENG J Y, LIU J L, WANG S J, et al. Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study[J]. Chinese Physics B, 2020, 29(4): doi: 10.1088/1674-1056/a67654. |
33 | LEE H, SHIN W, CHOI J W, et al. Nanomechanical properties of lithiated Si nanowires probed with atomic force microscopy[J]. Journal of Physics D: Applied Physics, 2012, 45(27): doi: 10.1088/0022-3727/45/27/275301. |
34 | ZHENG J Y, ZHENG H, WANG R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(26): 13229-13238. |
35 | SONG Y X, WAN J, GUO H J, et al. Insights into evolution processes and degradation mechanisms of anion-tunable interfacial stability in all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2021, 41: 642-649. |
36 | ZHANG H T, WANG D Y, SHEN C. In-situ EC-AFM and ex-situ XPS characterization to investigate the mechanism of SEI formation in highly concentrated aqueous electrolyte for Li-ion batteries[J]. Applied Surface Science, 2020, 507: doi: 10.1016/j.apsusc.2019.145059. |
37 | PROKSCH R, REVENKO I, HOHLBAUCH S, et al. AM-FM and loss tangent imaging two new high speed and high resolution tools for measuring quantitative nanomechanical properties[C]//NSTZ nanotechnology Conference and EXPO, santa clara CA, USA, 2012, 2012: 27-30. |
38 | LABUDA A, KOCUŃ M, MEINHOLD W, et al. Generalized Hertz model for bimodal nanomechanical mapping[J]. Beilstein Journal of Nanotechnology, 2016, 7: 970-982. |
39 | KOCUN M, LABUDA A, MEINHOLD W, et al. Fast, high resolution, and wide modulus range nanomechanical mapping with bimodal tapping mode[J]. ACS Nano, 2017, 11(10): 10097-10105. |
40 | AMO C A, PERRINO A P, PAYAM A F, et al. Mapping elastic properties of heterogeneous materials in liquid with angstrom-scale resolution[J]. ACS Nano, 2017, 11(9): 8650-8659. |
41 | LABUDA A, HOHLBAUCH S, KOCUN M, et al. Tapping mode AFM imaging in liquids with blueDrive photothermal excitation[J]. Microscopy Today, 2018, 26(6): 12-17. |
42 | MAHANI Z N, TAJVIDI M. Viscoelastic mapping of spruce-polyurethane bond line area using AM-FM atomic force microscopy[J]. International Journal of Adhesion and Adhesives, 2017, 79: 59-66. |
43 | AL-REKABI Z, CONTERA S. Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): 2658-2663. |
44 | HUANG L J, ZHANG X Y, SHAO J, et al. Nanoscale chemical and mechanical heterogeneity of human dentin characterized by AFM-IR and bimodal AFM[J]. Journal of Advanced Research, 2020, 22: 163-171. |
45 | ANTUNES A, POPELKA A, ALJAROD O, et al. Effects of rutile-TiO2 nanoparticles on accelerated weathering degradation of poly(lactic acid)[J]. Polymers, 2020, 12(5): doi: 10.3390/polym12051096. |
46 | NASSAR R, WONG E, BUI J M, et al. Mechanical anisotropy in GNNQQNY amyloid crystals[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 4901-4909. |
47 | JIANG H, PENG H, GUO H, et al. Interfacial mechanical strength enhancement for high-performance ZnS thin-film anodes[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51344-51356. |
48 | YANG S, WU J X, YAN B G, et al. Nanoscale characterization of charged/discharged lithium-rich thin film cathode by scanning probe microscopy techniques[J]. Journal of Power Sources, 2017, 352: 9-17. |
49 | EBELING D, SOLARES S D. Bimodal atomic force microscopy driving the higher eigenmode in frequency-modulation mode: Implementation, advantages, disadvantages and comparison to the open-loop case[J]. Beilstein Journal of Nanotechnology, 2013, 4: 198-207. |
50 | ELLIS B, SMITH R. Polymers: A property database[M. 2nd ed. Boca Raton: CRC Press, 2008 |
51 | TORRES J M, STAFFORD C M, VOGT B D. Manipulation of the elastic modulus of polymers at the nanoscale: Influence of UV-ozone cross-linking and plasticizer[J]. ACS Nano, 2010, 4(9): 5357-5365. |
52 | ALLEN R A, WARD I M, BASHIR Z. An investigation into the possibility of measuring an 'X-ray modulus' and new evidence for hexagonal packing in polyacrylonitrile[J]. Polymer, 1994, 35(10): 2063-2071. |
[1] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[2] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[6] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[7] | 王灿, 马盼, 祝国梁, 魏水淼, 杨植禄, 张志宇. 丙烯酸锂包覆天然石墨对其电化学性能的影响[J]. 储能科学与技术, 2022, 11(6): 1706-1714. |
[8] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[9] | 王苏杭, 李建林, 李雅欣, 熊俊杰, 曾伟. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
[10] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[11] | 郑征, 王肖帅, 李斌, 黄涛, 李佩柯. 基于三绕组变压器的锂电池组自适应交错控制均衡方案[J]. 储能科学与技术, 2022, 11(4): 1131-1140. |
[12] | 王星星, 宋子钰, 吴浩, 冯文芳, 周志彬, 张恒. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4): 1226-1235. |
[13] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[14] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[15] | 余春林, 陈旭东, 宫川敏夫, 孙辉, 张兴旺, 童莉葛. 特殊结构前驱体对锂电池三元正极材料性能的提升[J]. 储能科学与技术, 2022, 11(3): 1000-1007. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||