储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 982-990.doi: 10.19799/j.cnki.2095-4239.2021.0464
收稿日期:
2021-09-04
修回日期:
2021-09-23
出版日期:
2022-03-05
发布日期:
2022-03-11
通讯作者:
李玲芳
E-mail:yourvicky@126.com
作者简介:
李玲芳(1981—),女,教授,研究方向为锂离子电池电极材料,E-mail: 基金资助:
Zan DUAN(), Lingfang LI(), Penghui LIU, Dongfang XIAO
Received:
2021-09-04
Revised:
2021-09-23
Online:
2022-03-05
Published:
2022-03-11
Contact:
Lingfang LI
E-mail:yourvicky@126.com
摘要:
二维层状过渡金属碳化物(氮化物)MXenes以其独特的物理和化学性能成为新型储能器件电极材料的重要候选材料,目前研究最广泛的MXenes材料为美国Drexel大学Gogotsi课题组于2011年以MAX相陶瓷材料Ti3AlC2为前驱体制备的Ti3C2T x。结合本课题组对Ti3C2T x /SnO2复合材料储锂性能的探索,本文综述了近年来二维与三维MXenes作为储能材料的新型制备手段,分析了三维MXenes及复合体系的储能优势,然后总结了目前比较主流的MXenes能量存储机制。大量资料表明:目前主要以HF或者LiF+HCl作为刻蚀剂,制备手风琴结构或类黏土结构的二维MXenes,采用不同改性手段减少二维MXenes纳米片重复堆积、形成良好对齐的交替排列结构是提高其电化学性能的有效策略;而制备三维体系的MXenes及复合材料则主要使用模板法,此类结构除了可抑制纳米片叠合之外,还有丰富的通道,有利于电解质的快速扩散与载流子的快速传输,再加上MXenes优异的电导率(约105 S/cm)、低的锂离子扩散能垒以及独特的金属离子吸附特性,使其能够成为理想的活性材料或电极。最后,本文对MXenes系储能材料的未来机遇和挑战进行了简要的展望。
中图分类号:
段赞, 李玲芳, 柳鹏辉, 肖东方. MXenes系储能材料的先进制备手段与储能机制综述[J]. 储能科学与技术, 2022, 11(3): 982-990.
Zan DUAN, Lingfang LI, Penghui LIU, Dongfang XIAO. Review on advanced preparation methods and energy storage mechanism of MXenes as energy storage materials[J]. Energy Storage Science and Technology, 2022, 11(3): 982-990.
1 | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. |
2 | SHUCK C E, GOGOTSI Y. Taking MXenes from the lab to commercial products[J]. Chemical Engineering Journal, 2020, 401: doi: 10.1016/j.cej.2020.125786. |
3 | KRISHNA Y, SAIDUR R, ASLFATTAHI N, et al. Enhancing the thermal properties of organic phase change material (palmitic acid) by doping MXene nanoflakes[J]. AIP Conference Proceedings, 2020, 2233(1): doi: 10.1063/5.0001366. |
4 | ASLFATTAHI N, SAIDUR R, ARIFUTZZAMAN A, et al. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites[J]. Journal of Energy Storage, 2020, 27: doi: 10.1016/j.est.2019.101115. |
5 | LEONG K Y, CHEW S P, GURUNATHAN B A, et al. An experimental approach to investigate thermal performance of paraffin wax and 1-hexadecanol based heat sinks for cooling of electronic system[J]. International Communications in Heat and Mass Transfer, 2019, 109: doi: 10.1016/j.icheatmasstransfer.2019.104365. |
6 | NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. |
7 | ANASORI B, DAHLQVIST M, HALIM J, et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3[J]. Journal of Applied Physics, 2015, 118(9): doi: 10.1063/1.4929640. |
8 | SZUPLEWSKA A, KULPIŃSKA D, DYBKO A, et al. Future applications of MXenes in biotechnology, nanomedicine, and sensors[J]. Trends in Biotechnology, 2020, 38(3): 264-279. |
9 | ZHANG Y J, LAN J H, WANG L, et al. Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study[J]. Journal of Hazardous Materials, 2016, 308: 402-410. |
10 | RONCHI R M, ARANTES J T, SANTOS S F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives[J]. Ceramics International, 2019, 45(15): 18167-18188. |
11 | 补淇, 胡静, 雷鑫, 等. Ti3C2Tx MXene/聚乙烯醇复合材料的介电性能[J]. 复合材料学报, 2021, 38(6): 1922-1928. |
BU Q, HU J, LEI X, et al. Dielectric properties of Ti3C2Tx MXene/polyvinyl alcohol composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1922-1928. | |
12 | 杨光, 毛琳, 石志军,等. 可降解的电活性细菌纤维素/MXenes复合水凝胶及制备与应用: CN111303449A[P]. 2020-06-19. |
YANG G, MAO L, SHI Z J, et al. Preparation and application of biodegradable electroactive bacterial cellulose/MXenes composite hydrogel. CN111303449A[P]. 2020-06-19. | |
13 | WEN C Y, ZHU T J, LI X Y, et al. Nanostructured Ni/Ti3C2Tx MXene hybrid as cathode for lithium-oxygen battery[J]. Chinese Chemical Letters, 2020, 31(4): 1000-1003. |
14 | WEI C L, FEI H F, TIAN Y, et al. Scalable construction of SiO/wrinkled MXene composite by a simple electrostatic self-assembly strategy as anode for high-energy lithium-ion batteries[J]. Chinese Chemical Letters, 2020, 31(4): 980-983. |
15 | 孙贺雷, 李云飞, 易荣华, 等. N、B共掺杂MXene复合材料的制备及其电化学性能研究[J]. 储能科学与技术, 2019, 8(1): 130-137. |
SUN H L, LI Y F, YI R H, et al. Preparation and characterization of electrochemical properties of nitrogen and boron co-doped MXene composite materials[J]. Energy Storage Science and Technology, 2019, 8(1): 130-137. | |
16 | CHEN Z, LI X L, WANG D H, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures[J]. Energy & Environmental Science, 2021, 14(6): 3492-3501. |
17 | RAJAKUMARAN R, ANUPRIYA J, CHEN S M. 2D-Titanium carbide MXene/RGO composite modified electrode for selective detection of carcinogenic residue furazolidone in food and biological samples[J]. Materials Letters, 2021, 297: doi: 10.1016/j.matlet.2021.129979. |
18 | DONG Y F, SHI H D, WU Z S. Hybrid nanostructures: Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries[J]. Advanced Functional Materials, 2020, 30(47): doi: 10.1002/adfm.202070310. |
19 | ZHANG D, WANG S, LI B, et al. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes[J]. Advanced Materials, 2019, 31(33): doi: 10.1002/adma.201901820. |
20 | 姚乃元, 仙存妮. 二维过渡金属碳化物或碳氮化物在燃料电池催化剂中的应用研究进展[J]. 储能科学与技术, 2018, 7(4): 631-638. |
YAO N Y, XIAN C N. Research progress of two-dimensional transition metal carbides and carbonitrides materials for fuel-cell catalysts[J]. Energy Storage Science and Technology, 2018, 7(4): 631-638. | |
21 | NAGUIB M, GOGOTSI Y. Synthesis of two-dimensional materials by selective extraction[J]. Accounts of Chemical Research, 2015, 48(1): 128-135. |
22 | LEI J C, KUTANA A, YAKOBSON B I. Predicting stable phase monolayer Mo2C (MXene), a superconductor with chemically-tunable critical temperature[J]. Journal of Materials Chemistry C, 2017, 5(14): 3438-3444. |
23 | HANTANASIRISAKUL K, ALHABEB M, LIPATOV A, et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene[J]. Chemistry of Materials, 2019, 31(8): 2941-2951. |
24 | GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
25 | MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013, 4: doi: 10.1038/ncomms2664. |
26 | NAGUIB M, UNOCIC R R, ARMSTRONG B L, et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes"[J]. Dalton Transactions, 2015, 44(20): 9353-9358. |
27 | ABDOLHOSSEINZADEH S, JIANG X T, ZHANG H, et al. Perspectives on solution processing of two-dimensional MXenes[J]. Materials Today, 2021, 48: 214-240. |
28 | XUAN J N, WANG Z Q, CHEN Y Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance[J]. Angewandte Chemie (International Ed in English), 2016, 55(47): 14569-14574. |
29 | WANG L B, ZHANG H, WANG B, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process[J]. Electronic Materials Letters, 2016, 12(5): 702-710. |
30 | XIE X H, XUE Y, LI L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J]. Nanoscale, 2014, 6(19): 11035-11040. |
31 | URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale, 2016, 8(22): 11385-11391. |
32 | HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene)[J]. Advanced Functional Materials, 2016, 26(18): 3118-3127. |
33 | WU Y T, NIE P, WU L Y, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chemical Engineering Journal, 2018, 334: 932-938. |
34 | ASLAM M K, ALGARNI T S, JAVED M S, et al. 2D MXene materials for sodium ion batteries: A review on energy storage[J]. Journal of Energy Storage, 2021, 37: doi: 10.1016/j.est.2021.102478. |
35 | NAN J X, GUO X, XIAO J, et al. Nanoengineering of 2D MXene-based materials for energy storage applications[J]. Small, 2021, 17(9): doi: 10.1002/smll.201902085. |
36 | LU M, HAN W J, LI H B, et al. There is plenty of space in the MXene layers: The confinement and fillings[J]. Journal of Energy Chemistry, 2020, 48: 344-363. |
37 | LUO J M, ZHANG W K, YUAN H D, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors[J]. ACS Nano, 2017, 11(3): 2459-2469. |
38 | YAN J, REN C G, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017, 27(30): doi: 10.1002/adfm.201701264. |
39 | LU M, HAN W J, LI H J, et al. Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity[J]. Energy Storage Materials, 2019, 16: 163-168. |
40 | LI K, LIANG M Y, WANG H, et al. 3D MXene architectures for efficient energy storage and conversion[J]. Advanced Functional Materials, 2020, 30(47): doi: 10.1002/adfm.202000842. |
41 | TIAN Y P, YANG C H, QUE W X, et al. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors[J]. Journal of Power Sources, 2017, 369: 78-86. |
42 | GUO J, ZHAO Y Y, LIU A M, et al. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor[J]. Electrochimica Acta, 2019, 305: 164-174. |
43 | HU M, LI Z, ZHANG H, et al. Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance[J]. Chemical Communications (Cambridge, England), 2015, 51(70): 13531-13533. |
44 | TANG Y, YANG C H, YANG Y W, et al. Three dimensional hierarchical network structure of S-NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution[J]. Electrochimica Acta, 2019, 296: 762-770. |
45 | SONG D K, LI X F, LI X P, et al. Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range[J]. Journal of Colloid and Interface Science, 2019, 555: 751-758. |
46 | ZHAO X, ZHA X J, PU J H, et al. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2019, 7(17): 10446-10455. |
47 | WANG Y, YANG J, CHEN Z F, et al. A new flexible and ultralight carbon foam/Ti3C2Tx MXene hybrid for high-performance electromagnetic wave absorption[J]. RSC Advances, 2019, 9(70): 41038-41049. |
48 | YUE Y, LIU N S, LIU W J, et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor[J]. Nano Energy, 2018, 50: 79-87. |
49 | LI X P, LI Y, LI X F, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets[J]. Journal of Colloid and Interface Science, 2019, 542: 54-62. |
50 | WANG Q, WANG S L, GUO X H, et al. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life[J]. Advanced Electronic Materials, 2019, 5(12): doi: 10.1002/aelm.201900537. |
51 | ZHOU Z H, PANATDASIRISUK W, MATHIS T S, et al. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage[J]. Nanoscale, 2018, 10(13): 6005-6013. |
52 | YANG K, YIN F, XIA D, et al. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range[J]. Protein Expression and Purification, 2019, 11(20): 9949-9957. |
53 | LI K, WANG X, LI S, et al. An ultrafast conducting Polymer@MXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors[J]. Small, 2020, 16(4): doi: 10.1002/smll.201906851. |
54 | LUKATSKAYA M R, KOTA S, LIN Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2: doi: 10.1038/nenergy.2017.105. |
55 | ZHAO S, ZHANG H B, LUO J Q, et al. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances[J]. ACS Nano, 2018, 12(11): 11193-11202. |
56 | LIU J, ZHANG H B, SUN R H, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017, 29(38): doi: 10.1002/adma.201702367. |
57 | YUAN W J, YANG K, PENG H F, et al. A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance[J]. Journal of Materials Chemistry A, 2018, 6(37): 18116-18124. |
58 | JUN B M, KIM S, HEO J, et al. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications[J]. Nano Research, 2019, 12(3): 471-487. |
59 | ZHANG X, ZHANG Z H, ZHOU Z. MXene-based materials for electrochemical energy storage[J]. Journal of Energy Chemistry, 2018, 27(1): 73-85. |
60 | MA Z Y, ZHOU X F, DENG W, et al. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3634-3643. |
61 | TANG Q, ZHOU Z, SHEN P W. Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134(40): 16909-16916. |
62 | KARLSSON L H, BIRCH J, HALIM J, et al. Atomically resolved structural and chemical investigation of single MXene sheets[J]. Nano Letters, 2015, 15(8): 4955-4960. |
63 | GUO J X, PENG Q M, FU H, et al. Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(36): 20923-20930. |
64 | ZHOU J, ZHA X H, ZHOU X B, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide[J]. ACS Nano, 2017, 11(4): 3841-3850. |
65 | XIE Y, NAGUIB M, MOCHALIN V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides[J]. Journal of the American Chemical Society, 2014, 136(17): 6385-6394. |
66 | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2: doi: 10.1038/natrevmats.2016.98. |
67 | GHIDIU M, HALIM J, KOTA S, et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene[J]. Chemistry of Materials, 2016, 28(10): 3507-3514. |
68 | XIE Y, DALL'AGNESE Y, NAGUIB M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries[J]. ACS Nano, 2014, 8(9): 9606-9615. |
[1] | 郭铁柱, 周迪, 张传芳. MXenes胶体氧化的调控策略及其对超级电容器性能的影响[J]. 储能科学与技术, 2022, 11(4): 1165-1174. |
[2] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[3] | 李月霞, 刘全兵. MXene基纳米材料在氧还原电催化中的应用[J]. 储能科学与技术, 2021, 10(6): 1918-1930. |
[4] | 胡铭昌, 周雪晴, 黄雪妍, 薛建军. 无溶剂制备锌空气电极及电池性能[J]. 储能科学与技术, 2021, 10(6): 2090-2096. |
[5] | 崔言明, 张秩华, 黄园桥, 林久, 姚霞银, 许晓雄. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3): 836-847. |
[6] | 王腾辉, 陈果, 杨学林. 非晶态纳米硅粉制备方法综述[J]. 储能科学与技术, 2021, 10(2): 440-447. |
[7] | 李 昭, 李宝让, 崔 柳, 杜小泽. 高温熔盐基纳米流体热物性的稳定性研究[J]. 储能科学与技术, 2020, 9(6): 1775-1783. |
[8] | 易红明, 吕志强, 张华民, 宋明明, 郑 琼, 李先锋. 钠离子电池钒基聚阴离子型正极材料的发展现状与应用挑战[J]. 储能科学与技术, 2020, 9(5): 1350-1369. |
[9] | 贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1266-1283. |
[10] | 钟明, 闫伟, 王佳超, 王婧, 李灵宏. 炭基锂离子电容器负极预嵌锂技术研究进展[J]. 储能科学与技术, 2018, 7(4): 639-645. |
[11] | 张 辰1,刘东海2,吕 伟 3,凌国维1,杨全红2,3. 高体积能量密度锂硫电池的构建:材料和电极[J]. 储能科学与技术, 2017, 6(3): 550-556. |
[12] | 郑 超1,周旭峰2,刘兆平2,杨 斌1,焦旺春1,傅冠生1,阮殿波1. 活性石墨烯/活性炭干法复合电极片制备及其在超级电容器中的应用[J]. 储能科学与技术, 2016, 5(4): 486-491. |
[13] | 周朝辉1,王莉2,李建刚1,何向明2. 单质磷复合材料在二次电池中的应用研究进展[J]. 储能科学与技术, 2016, 5(4): 430-435. |
[14] | 袁骏飞, 吴斌, 胡芸, 李德湛, 谢凯, 洪晓斌. 复合聚合物电解质制备与性能[J]. 储能科学与技术, 2015, 4(4): 417-421. |
[15] | 杨超, 张东, 李秀强. 相变材料微胶囊研究现状及应用[J]. 储能科学与技术, 2014, 3(3): 203-209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||