储能科学与技术 ›› 2021, Vol. 10 ›› Issue (2): 440-447.doi: 10.19799/j.cnki.2095-4239.2020.0360
收稿日期:
2020-11-09
修回日期:
2020-12-02
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
杨学林
E-mail:tenghui928@163.com;xlyang@ctgu.edu.cn
作者简介:
王腾辉(2000—),男,本科生,主要从事储能电池材料研究,E-mail:基金资助:
Tenghui WANG1,2(), Guo CHEN1, Xuelin YANG1()
Received:
2020-11-09
Revised:
2020-12-02
Online:
2021-03-05
Published:
2021-03-05
Contact:
Xuelin YANG
E-mail:tenghui928@163.com;xlyang@ctgu.edu.cn
摘要:
硅基材料是具备良好应用前景的锂离子电池负极材料。然而,硅基负极材料也面临机械稳定性和电化学稳定性差等问题,限制了其作为锂离子电池材料的实际应用。非晶态纳米硅粉通过将硅颗粒纳米化与非晶化,可显著改善机械稳定性和电化学稳定性,其有效的制备方法对于改善锂离子电池的各项性能具有重要意义。非晶态纳米硅粉的制备有以下几种方法:用还原性强的金属或非金属还原硅氧化物或卤化物;将原料硅液化或汽化后快速冷凝;通过热分解气相反应制备。本文对非晶态纳米硅粉的制备方法进行综述,包括机械球磨法、化学还原法、溶剂热法、液相急冷法以及气相沉积法等。并围绕经济性、工业化生产可行性等方面介绍了各种制备方法的优缺点。本文同时介绍了等离子蒸发冷凝法、喷雾造粒技术、自蔓延燃烧法、改良西门子法、电沉积法等其他具有可能性的制备方法,以期为非晶态纳米硅粉的制备提供更多参考。
中图分类号:
王腾辉, 陈果, 杨学林. 非晶态纳米硅粉制备方法综述[J]. 储能科学与技术, 2021, 10(2): 440-447.
Tenghui WANG, Guo CHEN, Xuelin YANG. Review of preparations of amorphous nanostructured silicon powder[J]. Energy Storage Science and Technology, 2021, 10(2): 440-447.
1 | 肖忠良, 夏妮, 宋刘斌, 等. 锂离子电池硅基负极材料研究进展[J]. 电源技术, 2019, 43(1): 154-157. |
XIAO Zhongliang, XIA Ni, SONG Liubin, et al. Research progress of silicon-based anode materials for Li-ion battery[J]. Chinese Journal of Power Sources, 2019, 43(1): 154-157. | |
2 | 黄玥, 徐鹏, 张旭红, 等. 锂离子电池硅碳复合负极材料结构设计与研究进展[J]. 应用化工, 2020, 49(1): 185-189. |
HUANG Yue, XU Peng, ZHANG Xuhong, et al. Advances in the design and research of silicon/carbon composite anode materials for lithium ion batteries[J]. Applied Chemical Industry, 2020, 49(1): 185-189. | |
3 | LI Peng, ZHAO Guoqiang, ZHENG Xiaobo, et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications[J]. Energy Storage Materials, 2018, 15: 422-446. |
4 | MANJ R Z A, ZHANG Fangzhou, REHMAN W U, et al. Toward understanding the interaction within silicon-based anodes for stable lithium storage[J]. Chemical Engineering Journal, 2020, 385: doi: 10.1016/j.cej.2019.123821. |
5 | FENG Kun, LI M, LIU Wenwen, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018, 14(8): 1-33. |
6 | TEKI R, DATTA M K, KRISHNAN R, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries[J]. Small, 2010, 5(20): 2236-2242. |
7 | 王舟. 具有纳米结构的硅基材料作为锂离子电池阳极的应用[J]. 广东化工, 2017, 44(14): 164-165. |
WANG Zhou. Silicon-based nanomaterials used as lithium-ion battery anodes[J]. Guangdong Chemical Industry, 2017, 44(14): 164-165. | |
8 | 李世彬, 吴志明, 袁凯, 等. 氢化非晶硅薄膜的热导率研究[J]. 物理学报, 2008, 57(5): 3126-3131. |
LI Shibin, WU Zhiming, YUAN Kai, et al. Study on thermal conductivity of hydrogenated amorphous silicon films[J]. Acta Physica Sinica, 2008, 57(5): 3126-3131. | |
9 | BEAULIEU L Y, HATCHARD T D, BONAKDARPOUR A, et al. Reaction of Li with alloy thin films studied by in situ AFM[J]. Journal of the Electrochemical Society, 2003, 150(11): A1457-A1464. |
10 | MCDOWELL M T, LEE S W, HARRIS J T, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters, 2013, 13: 758-764. |
11 | LIN Liangdong, XU Xuena, CHU Chenxiao, et al. Mesoporous amorphous silicon: A simple synthesis of a high-rate and long-life anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(45): 14063-14066. |
12 | 贾铮. 锂离子电池无定形硅负极锂化过程中的应力缓解机制[C]//2018年全国固体力学学术会议摘要集(上). 哈尔滨, 2018. |
JIA Zheng. Stress relief mechanism in amorphous silicon anode lithification of lithium ion batteries[C]//2018 National Conference on Solid Mechanics. Harbin, 2018. | |
13 | 张思源, 张鑫, 王彦军, 等. 纳米硅粉制备技术及发展前景展望[J]. 金属世界, 2019(1): 31-35. |
ZHANG Siyuan, ZHANG Xin, WANG Yanjun, et al. Preparation technology and prospect of nanometer silicon powder[J]. Metal World, 2019(1): 31-35. | |
14 | SVRCEK V, REHSPRINGER J L, GAFFET E, et al. Unaggregated silicon nanocrystals obtained by ball milling[J]. Journal of Crystal Growth, 2005, 275(3/4): 589-597. |
15 | 梁初, 陈云, 王凯, 等. 一种非晶硅粉体的制备方法: 中国, 201710247883.X[P]. 2017-07-14. |
LIANG Chu, CHEN Yun, WANG Kai, et al. A preparation method of amorphous silicon powder: CN 201710247883.X[P]. 2017-7-14. | |
16 | 张允什, 袁华堂, 张大昕. 无定形硅的制备方法: 中国, 90108098.5[P]. 1992-04-08. |
ZHANG Yunshi, YUAN Huatang, ZHANG Daxin. Preparation method of amorphous silicon: CN 90108098.5[P]. 1992-04-08. | |
17 | 徐如人, 庞文琴. 无机合成与制备化学[M]. 北京: 高等教育出版社, 2009: 155. |
XU Ruren, PANG Wenqin. Inorganic Synthesis and Preparative Chemistry[M]. Beijing: Higher Education Press, 2009: 155. | |
18 | 林良栋. 高比能锂离子电池负极材料硅, 锂的可控制备与电化学性能研究[D]. 济南: 山东大学, 2019. |
LIN Liangdong. Controllable syntheses and electrochemical performance of silicon and lithium anode for high-energy-density lithium ion batteries[D]. Jinan: Shandong University, 2019. | |
19 | 徐绍明. 非晶材料甩带机及其参数化设计[D]. 太原: 太原科技大学, 2013. |
XU Shaoming. Design of amorphous material belt sling machine and its parameterization[D]. Taiyuan: Taiyuan University of Science and Technology, 2013. | |
20 | 陈肖华, 任德志, 徐丽萍, 等. 非晶成带机的关键技术研究[J]. 机床与液压, 2007, 35(4): 95-97. |
CHEN Xiaohua, REN Dezhi, XU Liping, et al. Research on the crucial technology of non-crystalloid flimsy alloy machine[J]. Machine Tool & Hydraulics, 2007, 35(4): 95-97. | |
21 | 白岩, 马书良, 成信刚, 等. 非晶硅粉体的制备方法、非晶硅粉体以及锂离子电池: 中国, 201710777314.6[P]. 2018-01-12. |
BAI Yan, MA Shuliang, CHENG Xingang, et al. Preparation method of amorphous silicon powder, amorphous silicon powder and lithium ion battery: CN 201710777314.6[P]. 2018-01-12. | |
22 | BOSSEL C, DUTTA J, HOURIET R, et al. Processing of nano-scaled silicon powders to prepare slip cast structural ceramics[J]. Materials Science & Engineering A, 1995, 204(1/2): 107-112. |
23 | DUTTA J, BACSA W, HOLLENSTEIN C. Microstructural properties of silicon powder produced in a low-pressure silane discharge[J]. Journal of Applied Physics, 1995, 77(8): 3729-3733. |
24 | DUTTA J, HOFMANN H, HOURIET R, et al. Growth, microstructure and sintering behavior of nanosized silicon powders[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 1997, 127(1/2/3): 263-272. |
25 | COSTA J, ROURA P, CANILLAS A, et al. On the structural origin of the photoluminescence in silicon powder produced in PECVD processes[J]. Thin Solid Films, 1996, 276(1/2): 96-99. |
26 | 张珈铭, 张念波, 张静全, 等. PECVD法硅纳米晶体的制备及在线表面改性[J]. 西南民族大学学报(自然科学版), 2014, 40(6): 928-934. |
ZHANG Jiaming, ZHANG Nianbo, ZHANG Jingquan, et al. The synthesis and in-flight passivation of silicon nanocrystals via PECVD[J]. Journal of Southwest University for Nationalities (Natural Science Edition), 2014, 40(6): 928-934. | |
27 | 刘志宏, 张淑英, 刘智勇, 等. 化学气相沉积制备粉体材料的原理及研究进展[J]. 粉末冶金材料科学与工程, 2009, 14(6): 359-364. |
LIU Zhihong, ZHANG Shuying, LIU Zhiyong, et al. Principle and research development of powder materials prepared by chemical vapor deposition[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(6): 359-364. | |
28 | 杨红, 金达莱, 马照军, 等. 热CVD法制备纳米硅粉及其表征[J]. 浙江大学学报(理学版), 2008, 35(3): 280-284. |
YANG Hong, JIN Dalai, MA Zhaojun, et al. Thermal CVD synthesis and characterization of silicon nanopowders[J]. Journal of Zhejiang University (Science Edition), 2008, 35(3): 280-284. | |
29 | 汪新颜, 金达莱, 马照军, 等. 硅烷流量对硅烷热CVD法制备纳米硅粉的影响[J]. 浙江理工大学学报, 2007, 24(5): 545-548. |
WANG Xinyan, JIN Dalai, MA Zhaojun, et al. The effect of silane flow rate on nano-silicon powder production by silane thermal CVD[J]. Journal of Zhejiang Sci-Tech University, 2007, 24(5): 545-548. | |
30 | 朱成良, 姚剑, 徐敏, 等. 硅烷法制备非晶硅粉的晶化研究[J]. 浙江理工大学学报, 2008, 25(2): 207-209. |
ZHU Chengliang, YAO Jian, XU Min, et al. Crystallization of amorphous silicon powder prepared by silane process[J]. Journal of Zhejiang Sci-Tech University, 2008, 25(2): 207-209. | |
31 | 王卫乡, 刘颂豪, 张有, 等. CO2激光CVD制备纳米硅粉[J]. 激光与红外, 1995(2): 27-31. |
WANG Weixiang, LIU Songhao, ZHANG You, et al. Nanosized silicon powders produced by CO2 laser-induced chemical vapor deposition[J]. Laser and Infrared, 1995(2): 27-31. | |
32 | 王卫乡, 李道火, 刘宗才, 等. 激光诱导化学气相沉积纳米硅粉[C]//首届中国功能材料及其应用学术会议. 桂林, 1992. |
WANG Weixiang, LI Daohuo, LIU Zongcai, et al. Laser-induced chemical vapor deposition of nano-silicon powder[C]//First Chinese Academic Conference on Functional Materials and Applications. Guilin, Guangxi, China, 1992. | |
33 | 范素芹, 吕红霞. LICVD法纳米硅粉的制备及激光能量阈值研究[J]. 河北科技大学学报, 2004, 25(3): 38-40. |
FAN Suqin, LÜ Hongxia. Nano-silicon powder produced by LICVD and study of laser threshold limit value[J]. Journal of Hebei University of Science and Technology, 2004, 25(3): 38-40. | |
34 | 梁礼正, 张海燕, 何艳阳, 等. 制备参数和退火对激光诱导化学汽相沉积合成纳米硅的粒径和红外光谱的影响[J]. 红外与激光工程, 2001, 30(5): 382-386. |
LING Lizheng, ZHANG Haiyan, HE Yanyang, et al. Effect of technologic parameters on particle diameters of nano-Si produced by LICVD[J]. Infrared and Laser Engineering, 2001, 30(5): 382-386. | |
35 | 李亚利, 梁勇. 激光诱导硅烷气相合成纳米硅粉研究[J]. 中国激光, 1994, 21(7): 609-612. |
LI Yali, LIANG Yong. Synthesis of nanometric Si powders from SiH4 by laser-induced gas phase reactions[J]. Chinese Journal of Lasers, 1994, 21(7): 609-612. | |
36 | 解忠伟. 硅烷均相裂解产物形态, 结构和组成的研究[D]. 上海: 上海交通大学, 2014. |
XIE Zhongwei. Studies on silane homogeneous pyrolysis: morphology and components of the produces[D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
37 | ZBIB M B, DAHL M M, SAHAYM U, et al. Characterization of granular silicon, powders, and agglomerates from a fluidized bed reactor[J]. Journal of Materials Science, 2012, 47(6): 2583-2590. |
38 | SANTANA C J, JONES K S. The effects of processing conditions on the density and microstructure of hot-pressed silicon powder[J]. Journal of Materials Science, 1996, 31(18): 4985-4990. |
39 | 杨文智, 黄伟明, 黄伟, 等. 太阳能级纳米硅粉制备技术及发展概况[J]. 兵器材料科学与工程, 2015, 38(1): 110-115. |
YANG Wenzhi, HUANG Weiming, HUANG Wei, et al. Preparation technology and development of solar grade nano silicon powder[J]. Ordnance Materials Science and Engineering, 2015, 38(1): 110-115. | |
40 | 张思源, 张鑫, 王彦军, 等. 感应等离子制备纳米硅粉的工艺及性能研究[J]. 有色金属工程, 2020, 10(3): 18-22. |
ZHANG Siyuan, ZHANG Xin, WANG Yanjun, et al. Study on technology and properties of nano silicon powder prepared by induction plasma[J]. Nonferrous Metal Engineering, 202, 10(3): 18-22. | |
41 | 王立惠, 张振军, 刘文平, 等. 感应等离子法制备纳米硅粉工艺初探[J]. 超硬材料工程, 2018, 30(2): 41-45. |
WANG Lihui, ZHANG Zhenjun, LIU Wenping, et al. Study on preparation of nano silicon powder by induction plasma[J]. Superhard Material Engineering, 2012, 30(2): 41-45. | |
42 | 秦海青, 张振军, 刘文平, 等. 一种纳米硅粉的制备方法: 中国, 201610577932.1[P]. 2016-07-21. |
QIN Haiqing, ZHANG Zhenjun, LIU Wenping, et al. A preparation method of nano silicon powder: CN 201610577932.1[P]. 2016-07-21. | |
43 | TANAKA K, ISHIZAKI K, YUMOTO S, et al. Production of ultra-fine silicon powder by the arc plasma method[J]. Journal of Materials Science, 1987, 22(6): 2192-2198. |
44 | 罗学涛, 卢成浩, 方明, 等. 一种硅粉的制备方法: 中国, 201310026873.5[P]. 2013-04-17. |
LUO Xuetao, LU Chenghao, FANG Ming, et al. A preparation method of silicon powder: CN 201310026873.5[P]. 2013-01-24. | |
45 | 程花蕾, 崔斌, 成海鸥, 等. 溶胶-自蔓延燃烧法制备纳米材料的研究进展[J]. 电子器件, 2007(6): 1-4. |
CHENG Halei, CUI Bin, CHENG Haiou, et al. Research and progress of sol-gel auto-combustion process in the synthesis of nanomaterials[J]. Journal of Electron Devices, 2007(6): 1-4. | |
46 | LIU Qingsheng, TANG Haifeng, FANG Hui. Upgrade silicon powder prepared by SHS with acid leaching treatment[J]. Advanced Materials Research, 2011, 402: 312-315. |
47 | WON Changwhan, NERSISYAN H H, WON Hyungill. Solar-grade silicon powder prepared by combining combustion synthesis with hydrometallurgy[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 745-750. |
48 | 宋张佐. 多晶硅无定型硅粉形成原因及控制[J]. 云南化工, 2019, 46(1): 12-14. |
SONG Zhangzuo. Cause analysis and control measures of amorphous silicon powder in polysilicon production[J]. Yunnan Chemical Technology, 2019, 46(1): 12-14. | |
49 | FARMAKIS F, ELMASIDES C, FANZ P. High energy density amorphous silicon anodes for lithium ion batteries deposited by DC sputtering[J]. Journal of Power Sources, 2015, 293: 301-305. |
50 | LI Weitian, GUO Xianwei, LU Yue, et al. Amorphous nanosized silicon with hierarchically porous structure for high-performance lithium ion batteries[J]. Energy Storage Materials, 2017, 7: 203-208. |
51 | LIU Zhengxin, NAGAI T, MASUDA A, et al. Seeding method with silicon powder for the formation of silicon spheres in the drop method[J]. Journal of Applied Physics, 2007, 101(9): doi: 10.1063/1.2718872. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[11] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[12] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[13] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||