1 |
WAN B Y, TIAN L X, FU M, et al. Green development growth momentum under carbon neutrality scenario[J]. Journal of Cleaner Production, 2021, 316: doi: 10.1016/j.jclepro.2021.128327.
|
2 |
CHEN T M, JIN Y, LV H Y, et al. Applications of lithium-ion batteries in grid-scale energy storage systems[J]. Transactions of Tianjin University, 2020, 26(3): 208-217.
|
3 |
ANDERSEN H L, DJUANDHI L, MITTAL U, et al. Strategies for the analysis of graphite electrode function[J]. Advanced Energy Materials, 2021, 11(48): doi: 10.1002/aenm.202102693.
|
4 |
JAGUEMONT J, BOULON L, DUBÉ Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures[J]. Applied Energy, 2016, 164: 99-114.
|
5 |
WANG Z J, WANG Y Y, ZHANG Z H, et al. Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes[J]. Advanced Functional Materials, 2020, 30(30): doi: 10.1002/adfm.202002414.
|
6 |
HENG S, SHAN X J, WANG W, et al. Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries[J]. Carbon, 2020, 159: 390-400.
|
7 |
UI K, FUJII D, NIWATA Y, et al. Analysis of solid electrolyte interface formation reaction and surface deposit of natural graphite negative electrode employing polyacrylic acid as a binder[J]. Journal of Power Sources, 2014, 247: 981-990.
|
8 |
GONG X H, ZHENG J, ZHENG Y B, et al. Succinimide-modified graphite as anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2020, 356: doi: 10.1016/j.electacta.2020.136858.
|
9 |
KIM D S, KIM Y E, KIM H. Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries[J]. Journal of Power Sources, 2019, 422: 18-24.
|
10 |
FRIESEN A, HILDEBRAND S, HORSTHEMKE F, et al. Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior[J]. Journal of Power Sources, 2017, 363: 70-77.
|
11 |
TALLMAN K R, YAN S, QUILTY C D, et al. Improved capacity retention of lithium ion batteries under fast charge via metal-coated graphite electrodes[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abcaba.
|
12 |
LIU Y, ELZATAHRY A A, LUO W, et al. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery[J]. Nano Energy, 2016, 25: 80-90.
|
13 |
LI F S, WU Y S, CHOU J, et al. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes[J]. Advanced Materials, 2015, 27(1): 130-137.
|
14 |
PARK S H, KIM H J, LEE J M, et al. Mussel-inspired polydopamine coating for enhanced thermal stability and rate performance of graphite anodes in Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 13973-13981.
|
15 |
GONG X H, ZHENG Y B, ZHENG J, et al. Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries[J]. ChemElectroChem, 2020, 7(6): 1465-1472.
|
16 |
LIU C, LIU X G, TAN J, et al. Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode[J]. Journal of Power Sources, 2017, 342: 157-164.
|
17 |
CHENG Q, YUGE R, NAKAHARA K, et al. KOH etched graphite for fast chargeable lithium-ion batteries[J]. Journal of Power Sources, 2015, 284: 258-263.
|
18 |
ZHANG L, ZENG M Y, WU D D, et al. Magnetic field regulating the graphite electrode for excellent lithium-ion batteries performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6152-6160.
|
19 |
SHI Q, LIU W J, QU Q T, et al. Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries[J]. Carbon, 2017, 111: 291-298.
|
20 |
ZHENG X Y, SHI Q, WANG Y, et al. The role of carbon bond types on the formation of solid electrolyte interphase on graphite surfaces[J]. Carbon, 2019, 148: 105-114.
|
21 |
HENG S, LV L Z, ZHU Y H, et al. Organic salts with unsaturated bond and diverse anions as substrates for solid electrolyte interphase on graphite anodes[J]. Carbon, 2021, 183: 108-118.
|
22 |
KIM J, NITHYA JEGHAN S M, LEE G. Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2020, 305: doi: 10.1016/j.micromeso.2020.110325.
|