1 |
LIU Y Y, ZHU Y Y, CUI Y. Challenges and opportunities towards fast-charging battery materials[J]. Nature Energy, 2019, 4(7): 540-550.
|
2 |
孙方静, 韦连梅, 张家玮, 等. 锂离子电池快充石墨负极材料的研究进展及评价方法[J]. 储能科学与技术, 2017, 6(6): 1223-1230.
|
|
SUN F J, WEI L M, ZHANG J W, et al. Research progress and evaluation methods of lithium-ion battery fast-charge graphite anode material[J]. Energy Storage Science and Technology, 2017, 6(6): 1223-1230.
|
3 |
MUKHERJEE R, KRISHNAN R, LU T M, et al. Nanostructured electrodes for high-power lithium ion batteries[J]. Nano Energy, 2012, 1(4): 518-533.
|
4 |
REN S H, PRAKASH R, WANG D, et al. Fe3O4 anchored onto helical carbon nanofibers as high-performance anode in lithium-ion batteries[J]. ChemSusChem, 2012, 5(8): 1397-1400.
|
5 |
HA J, PAIK U. Hydrogen treated, cap-opened Si nanotubes array anode for high power lithium ion battery[J]. Journal of Power Sources, 2013, 244: 463-468.
|
6 |
MEI W X, JIANG L H, LIANG C, et al. Understanding of Li-plating on graphite electrode: Detection, quantification and mechanism revelation[J]. Energy Storage Materials, 2021, 41: 209-221.
|
7 |
ZHANG S S. Dual-carbon lithium-ion capacitors: Principle, materials, and technologies[J]. Batteries & Supercaps, 2020, 3(11): 1137-1146.
|
8 |
AZUMA H, IMOTO H, YAMADA S, et al. Advanced carbon anode materials for lithium ion cells[J]. Journal of Power Sources, 1999, 81/82: 1-7.
|
9 |
LIU Y H, XUE J S, ZHENG T, et al. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins[J]. Carbon, 1996, 34(2): 193-200.
|
10 |
SHEN Y F, QIAN J F, YANG H X, et al. Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries[J]. Small, 2020, 16(7): doi: 10.1002/smll.201907602.
|
11 |
FANG M D, HO T H, YEN J P, et al. Preparation of advanced carbon anode materials from mesocarbon microbeads for use in high C-rate lithium ion batteries[J]. Materials, 2015, 8(6): 3550-3561.
|
12 |
JO Y N, PARK M S, LEE E Y, et al. Increasing reversible capacity of soft carbon anode by phosphoric acid treatment[J]. Electrochimica Acta, 2014, 146: 630-637.
|
13 |
WANG D, ZHOU J S, LI Z P, et al. Uniformly expanded interlayer distance to enhance the rate performance of soft carbon for lithium-ion batteries[J]. Ionics, 2019, 25(4): 1531-1539.
|
14 |
THROWER P A. Chemistry and physics of carbon[J]. New York: Marcel Dekker, 1997, 25.
|
15 |
VELURI P S, KATCHALA N, ANANDAN S, et al. Petroleum coke as an efficient single carbon source for high-energy and high-power lithium-ion capacitors[J]. Energy & Fuels, 2021, 35(10): 9010-9016.
|
16 |
CHEN C M, ZHANG Q, YANG M G, et al. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors[J]. Carbon, 2012, 50(10): 3572-3584.
|
17 |
YAMAGUCHI S, ASAHINA H, HIRASAWA K A, et al. SEI film formation on graphite anode surfaces in lithium ion battery[J]. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, 1998, 322(1): 239-244.
|
18 |
赵清江, 张贵锋. 硬碳的预锂化及其电化学性能[J]. 储能科学与技术, 2021, 10(6): 2112-2116.
|
|
ZHAO Q J, ZHANG G F. Prelithiation of hard carbon and its electrochemical performance[J]. Energy Storage Science and Technology, 2021, 10(6): 2112-2116.
|
19 |
GAO X, DU X, MATHIS T S, et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage[J]. Nature Communications, 2020, 11: 6160.
|
20 |
SHAN X Y, WANG Y Z, WANG D W, et al. Armoring graphene cathodes for high-rate and long-life lithium ion supercapacitors[J]. Advanced Energy Materials, 2016, 6(6): doi: 10.1002/aenm.201502064.
|