储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1772-1787.doi: 10.19799/j.cnki.2095-4239.2022.0176
收稿日期:
2022-03-30
修回日期:
2022-04-09
出版日期:
2022-06-05
发布日期:
2022-06-13
通讯作者:
刘凯
E-mail:ouyu200105@163.com;liukai2019@tsinghua.edu.cn
作者简介:
欧宇(2001—),男,本科在读,研究方向为锂离子电池,E-mail:ouyu200105@163.com;
OU Yu(), HOU Wenhui, LIU Kai()
Received:
2022-03-30
Revised:
2022-04-09
Online:
2022-06-05
Published:
2022-06-13
Contact:
LIU Kai
E-mail:ouyu200105@163.com;liukai2019@tsinghua.edu.cn
摘要:
电解液是锂离子电池中的重要组成部分,在电池两极之间起到了离子传输的作用。传统的有机电解液体系在面临电池的热失控时,难以进行及时的阻断,智能响应材料的发展为解决该问题提供了思路。本文对于近年来锂离子电池的智能安全电解液材料发展进行了综述,在面临不同滥用条件时,电解液的智能响应过程均进行了原理性的说明以及应用实例的介绍。例如,热响应性聚合物电解液能够通过构相转变及时阻断电池的非正常升温,剪切增稠电解液的相转变能有效应对电池受到的机械冲击,氧化还原穿梭剂的添加能够降低电池在过充情况下的热失控风险。最后,本文也对锂离子电池其余组件的智能化进行了简要概括。该研究对提高锂离子电池安全性以及智能响应材料的开发有一定的参考价值。
中图分类号:
欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787.
OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787.
1 | ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302. |
2 | ARGYROU M C, CHRISTODOULIDES P, KALOGIROU S A. Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 804-821. |
3 | CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2017, 16(1): 16-22. |
4 | LARSSON F, ANDERSSON P, MELLANDER B E. Lithium-ion battery aspects on fires in electrified vehicles on the basis of experimental abuse tests[J]. Batteries, 2016, 2(2): 9. |
5 | LOVERIDGE M, REMY G, KOURRA N, et al. Looking deeper into the galaxy (note 7)[J]. Batteries, 2018, 4(1): 3. |
6 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820. |
7 | YUAN S, CHANG C Y, YAN S S, et al. A review of fire-extinguishing agent on suppressing lithium-ion batteries fire[J]. Journal of Energy Chemistry, 2021, 62: 262-280. |
8 | DONG H, WANG P C, YAN S S, et al. A thermoresponsive composite separator loaded with paraffin@SiO2 microparticles for safe and stable lithium batteries[J]. Journal of Energy Chemistry, 2021, 62: 423-430. |
9 | YAN S S, CHEN X X, ZHOU P, et al. Regulating the growth of lithium dendrite by coating an ultra-thin layer of gold on separator for improving the fast-charging ability of graphite anode[J]. Journal of Energy Chemistry, 2022, 67: 467-473. |
10 | CHEN X X, YAN S S, TAN T H, et al. Supramolecular "flame-retardant" electrolyte enables safe and stable cycling of lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 182-190. |
11 | ZHANG W, XIA H R, ZHU Z Q, et al. Decimal solvent-based high-entropy electrolyte enabling the extended survival temperature of lithium-ion batteries to -130 ℃[J]. CCS Chemistry, 2020, 3(4): 1-26. |
12 | HU Y M, DUNLAP N, LONG H, et al. Helical covalent polymers with unidirectional ion channels as single lithium-ion conducting electrolytes[J]. CCS Chemistry, 2021, 3(12): 2762-2770. |
13 | WANG W J, ZHU X H, FU L. Touch ablation of lithium dendrites via liquid metal for high-rate and long-lived batteries[J]. CCS Chemistry, 2021, 3(1): 686-695. |
14 | GUO K R, LI S Q, CHEN G, et al. One-pot synthesis of polyester-based linear and graft copolymers for solid polymer electrolytes[J]. CCS Chemistry, 2021: 3485-3500. |
15 | STUART M A C, HUCK W T S, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials, 2010, 9(2): 101-113. |
16 | YAN X Z, WANG F, ZHENG B, et al. Stimuli-responsive supramolecular polymeric materials[J]. Chemical Society Reviews, 2012, 41(18): 6042-6065. |
17 | HYUNG Y E, VISSERS D R, AMINE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/120/121: 383-387. |
18 | PIRES J, CASTETS A, TIMPERMAN L, et al. Tris(2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2015, 296: 413-425. |
19 | XIA L, XIA Y G, LIU Z P. A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries[J]. Journal of Power Sources, 2015, 278: 190-196. |
20 | YUAN M Q, LIU K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 58-70. |
21 | LIU K, LIU W, QIU Y C, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Science Advances, 2017, 3(1): doi: 10.1126/sciadv.1601978. |
22 | YANG H, LEOW W R, CHEN X D. Thermal-responsive polymers for enhancing safety of electrochemical storage devices[J]. Advanced Materials, 2018, 30(13): doi: 10.1002/adma.201704347. |
23 | KELLY J C, PEPIN M, HUBER D L, et al. Reversible control of electrochemical properties using thermally-responsive polymer electrolytes[J]. Advanced Materials, 2012, 24(7): 886-889. |
24 | WEN L, LIANG J, CHEN J, et al. Smart materials and design toward safe and durable lithium ion batteries[J]. Small Methods, 2019, 3(11): doi: 10.1002/smtd.201900323. |
25 | KELLY J C, GUPTA R, ROBERTS M E. Responsive electrolytes that inhibit electrochemical energy conversion at elevated temperatures[J]. Journal of Materials Chemistry A, 2015, 3(7): 4026-4034. |
26 | KELLY J C, DEGROOD N L, ROBERTS M E. Li-ion battery shut-off at high temperature caused by polymer phase separation in responsive electrolytes[J]. Chemical Communications (Cambridge, England), 2015, 51(25): 5448-5451. |
27 | SHI Y, HA H, AL-SUDANI A, et al. Thermoplastic elastomer-enabled smart electrolyte for thermoresponsive self-protection of electrochemical energy storage devices[J]. Advanced Materials, 2016, 28(36): 7921-7928. |
28 | SHU K W, WANG C Y, LI W H, et al. Electrolytes with reversible switch between liquid and solid phases[J]. Current Opinion in Electrochemistry, 2020, 21: 297-302. |
29 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
30 | MACFARLANE D R, FORSYTH M, HOWLETT P C, et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage[J]. Nature Reviews Materials, 2016, 1: 15005. |
31 | WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions[J]. Physics Today, 2009, 62(10): 27-32. |
32 | DING J, TIAN T F, MENG Q, et al. Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection[J]. Scientific Reports, 2013, 3: 2485. |
33 | CHEN Z Q, CHAO Y F, LI W H, et al. Abuse-tolerant electrolytes for lithium-ion batteries[J]. Advanced Science, 2021, 8(11): doi: 10.1002/advs.202003694. |
34 | PFAFFENHUBER C, GÖBEL M, POPOVIC J, et al. Soggy-sand electrolytes: Status and perspectives[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(42): 18318-18335. |
35 | JIANG W F, XUAN S H, GONG X L. The role of shear in the transition from continuous shear thickening to discontinuous shear thickening[J]. Applied Physics Letters, 2015, 106(15): doi: 10.1063/1.4918344. |
36 | FERNANDEZ N, MANI R, RINALDI D, et al. Microscopic mechanism for shear thickening of non-Brownian suspensions[J]. Physical Review Letters, 2013, 111(10): doi: 10.1103/physRevLett.111.108301. |
37 | YE Y L, XIAO H, REAVES K, et al. Effect of nanorod aspect ratio on shear thickening electrolytes for safety-enhanced batteries[J]. ACS Applied Nano Materials, 2018, 1(6): 2774-2784. |
38 | BHATTACHARYYA A, MAIER J. Second phase effects on the conductivity of non-aqueous salt solutions: "soggy sand electrolytes"[J]. Advanced Materials, 2004, 16(9/10): 811-814. |
39 | MAIER J. Ionic conduction in space charge regions[J]. Progress in Solid State Chemistry, 1995, 23(3): 171-263. |
40 | DAS S K, MANDAL S S, BHATTACHARYYA A J. Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional ("Janus") "soggy sand" electrolytes[J]. Energy & Environmental Science, 2011, 4(4): 1391. |
41 | VEITH G M, ARMSTRONG B L, WANG H, et al. Shear thickening electrolytes for high impact resistant batteries[J]. ACS Energy Letters, 2017, 2(9): 2084-2088. |
42 | KOBAYASHI M, JUILLERAT F, GALLETTO P, et al. Aggregation and charging of colloidal silica particles: Effect of particle size[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(13): 5761-5769. |
43 | SHEN B H, ARMSTRONG B L, DOUCET M, et al. Shear thickening electrolyte built from sterically stabilized colloidal particles[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9424-9434. |
44 | LIU K W, CHENG C F, ZHOU L Y, et al. A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries[J]. Journal of Power Sources, 2019, 423: 297-304. |
45 | DE VICENTE J, KLINGENBERG D J, HIDALGO-ALVAREZ R. Magnetorheological fluids: A review[J]. Soft Matter, 2011, 7(8): 3701. |
46 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
47 | WANG Q S, JIANG L H, YU Y, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114. |
48 | HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: Progress and perspectives[J]. Energy Environ Sci, 2016, 9(6): 1955-1988. |
49 | BEHL W K, CHIN D T. Electrochemical overcharge protection of rechargeable lithium batteries: II. effect of lithium iodide-iodine additives on the behavior of lithium electrode in solutions[J]. Journal of the Electrochemical Society, 1988, 135(1): 21-25. |
50 | GÉLINAS B, BIBIENNE T, DOLLÉ M, et al. Electrochemistry and transport properties of electrolytes modified with ferrocene redox-active ionic liquid additives[J]. Canadian Journal of Chemistry, 2020, 98(9): 554-563. |
51 | LEONET O, COLMENARES L C, KVASHA A, et al. Improving the safety of lithium-ion battery via a redox shuttle additive 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB)[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9216-9219. |
52 | ZHANG J J, SHKROB I A, ASSARY R S, et al. An extremely durable redox shuttle additive for overcharge protection of lithium-ion batteries[J]. Materials Today Energy, 2019, 13: 308-311. |
53 | ERGUN S L, CASSELMAN M D, KAUR A P, et al. Improved synthesis of N-ethyl-3,7-bis(trifluoromethyl)phenothiazine[J]. New Journal of Chemistry, 2020, 44(26): 11349-11355. |
54 | JI W X, HUANG H, ZHENG D, et al. A redox-active organic cation for safer metallic lithium-based batteries[J]. Energy Storage Materials, 2020, 32: 185-190. |
55 | ZHANG J J, SHKROB I A, ASSARY R S, et al. Dual overcharge protection and solid electrolyte interphase-improving action in Li-ion cells containing a bis-annulated dialkoxyarene electrolyte additive[J]. Journal of Power Sources, 2018, 378: 264-267. |
56 | GUPTA D, CAI C, KOENIG G M. Comparative analysis of chemical redox between redox shuttles and a lithium-ion cathode material via electrochemical analysis of redox shuttle conversion[J]. Journal of the Electrochemical Society, 2021, 168(5): 050546. |
57 | KISE M, YOSHIOKA S, HAMANO K, et al. Alternating Current impedance behavior and overcharge tolerance of lithium-ion batteries using positive temperature coefficient cathodes[J]. Journal of the Electrochemical Society, 2006, 153(6): A1004. |
58 | LIU H M, SAIKIA D, WU H C, et al. Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries[J]. RSC Advance, 2014, 4 (99): 56147-56155. |
59 | CHENG C L, WAN C C, WANG Y Y, et al. Thermal shutdown behavior of PVdF-HFP based polymer electrolytes comprising heat sensitive cross-linkable oligomers[J]. Journal of Power Sources, 2005, 144(1): 238-243. |
60 | WU H, ZHUO D, KONG D S, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications, 2014, 5: 5193. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[11] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[12] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[13] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[14] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[15] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||