储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 863-871.doi: 10.19799/j.cnki.2095-4239.2021.0085
收稿日期:
2021-03-08
修回日期:
2021-04-01
出版日期:
2021-05-05
发布日期:
2021-04-30
通讯作者:
赵海雷
E-mail:zhang.sai.sai@163.com;hlzhao@ustb.edu.cn
作者简介:
张赛赛(1992—),女,博士研究生,主要研究方向为石榴石型锂离子固态电解质,E-mail:基金资助:
Saisai ZHANG1,2(), Hailei ZHAO1,2()
Received:
2021-03-08
Revised:
2021-04-01
Online:
2021-05-05
Published:
2021-04-30
Contact:
Hailei ZHAO
E-mail:zhang.sai.sai@163.com;hlzhao@ustb.edu.cn
摘要:
固态锂金属电池具有高能量密度、高安全性、宽工作温度范围、长服役寿命等优势,是下一代锂电池体系的重要发展方向之一。作为典型的氧化物固态电解质,Li7La3Zr2O12(LLZO)具有锂离子电导率高、电化学窗口较宽、机械强度高和热稳定性好等优点,因此LLZO固态锂金属电池受到业界的广泛关注。但是,LLZO固态锂金属电池还存在锂枝晶穿透固态电解质生长造成电池短路、电解质/电极界面电阻过高等问题,影响其实际应用。这些问题与LLZO的显微结构特征、正极材料与LLZO的化学和电化学相容性、正极与电解质的界面结合性、金属锂负极对LLZO的浸润性等因素有关。本文总结了以上问题的解决策略。对于正极侧,通过活性颗粒表面包覆、三维固态电解质界面构筑、柔性聚合物或凝胶电解质中间层引入、正极活性颗粒与柔性或黏性离子传导材料复合等手段,可改善正极与LLZO的相容性,并降低正极界面电阻。对于负极界面,消除LLZO电解质表面碳酸锂、引入反应活性或柔性中间层、调控金属锂负极组成等方法,可改善锂对LLZO的浸润性,降低负极界面电阻。最后,本文对未来研究和发展方向给出了建议。
中图分类号:
张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871.
Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress[J]. Energy Storage Science and Technology, 2021, 10(3): 863-871.
1 | BRANDT K. Historical development of secondary lithium batteries[J]. Solid State Ionics, 1994, 69(3/4): 173-183. |
2 | RAMAKUMAR S, DEVIANNAPOORANI C, DHIVYA L, et al. Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications[J]. Progress in Materials Science, 2017, 88: 325-411. |
3 | PELJO P, GIRAULT H H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception[J]. Energy & Environmental Science, 2018, 11(9): 2306-2309. |
4 | ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. |
5 | RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
6 | HAN F, ZHU Y, HE X, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201501590. |
7 | JALEM R, MORISHITA Y, OKAJIMA T, et al. Experimental and first-principles DFT study on the electrochemical reactivity of garnet-type solid electrolytes with carbon[J]. Journal of Materials Chemistry A, 2016, 4(37): 14371-14379. |
8 | CONNELL J G, FUCHS T, HARTMANN H, et al. Kinetic versus thermodynamic stability of LLZO in contact with lithium metal[J]. Chemistry of Materials, 2020, 32(23): 10207-10215. |
9 | XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015. |
10 | KIM K H, IRIYAMA Y, YAMAMOTO K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery[J]. Journal of Power Sources, 2011, 196(2): 764-767. |
11 | PARK K, YU B C, JUNG J W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12[J]. Chemistry of Materials, 2016, 28(21): 8051-8059. |
12 | WAKASUGI J, MUNAKATA H, KANAMURA K. Thermal stability of various cathode materials against Li6.25Al0.25La3Zr2O12 electrolyte[J]. Electrochemistry, 2017, 85(2): 77-81. |
13 | MIARA L J, RICHARDS W D, WANG Y E, et al. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets[J]. Chemistry of Materials, 2015, 27(11): 4040-4047. |
14 | KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. Journal of Power Sources, 2014, 260: 292-298. |
15 | WANG L P, ZHANG X D, WANG T S, et al. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers[J]. Advanced Energy Materials, 2018, 8(24): doi: 10.1002/aenm.201801528. |
16 | WANG C, LI X, ZHAO Y, et al. Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries[J]. Small Methods, 2019, 3(10): doi: 10.1002/smtd.201900261. |
17 | LIU T, REN Y, SHEN Y, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance[J]. Journal of Power Sources, 2016, 324: 349-357. |
18 | LIU T, ZHANG Y B, ZHANG X, et al. Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification[J]. Journal of Materials Chemistry A, 2018, 6(11): 4649-4657. |
19 | ZHOU W D, WANG S F, LI Y T, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388. |
20 | SUBRAMANI R, TSENG Y H, LEE Y L, et al. High Li+ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(19): 12244-12252. |
21 | HITZ G T, MCOWEN D W, ZHANG L, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture[J]. Materials Today, 2019, 22: 50-57. |
22 | CHEN C, LI Q, LI Y Q, et al. Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 2185-2190. |
23 | LUO W, GONG Y, ZHU Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, 29(22): doi: 10.1002/adma.201606042. |
24 | BI Z, ZHAO N, MA L, et al. Interface engineering on cathode side for solid garnet batteries[J]. Chemical Engineering Journal, 2020, 387: doi: 10.1016/j.cej.2020.124089. |
25 | HE M, CUI Z, CHEN C, et al. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries[J]. Journal of Materials Chemistry A, 2018, 6(24): 11463-11470. |
26 | YI E, SHEN H, HEYWOOD S, et al. All-solid-state batteries using rationally designed garnet electrolyte frameworks[J]. ACS Applied Energy Materials, 2020, 3(1): 170-175. |
27 | HAN F, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3): 497-508. |
28 | DU F, ZHAO N, LI Y, et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. Journal of Power Sources, 2015, 300: 24-28. |
29 | LIN D C, LIU W, LIU Y Y, et al. High ionic conductivity of composite solid polymer electrolyte viain situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459-465. |
30 | CROCE F, PERSI L L, SCROSATI B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta, 2001, 46(16): 2457-2461. |
31 | ZHENG J, TANG M, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie-International Edition, 2016, 55(40): 12538-12542. |
32 | MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): doi: 10.1149/1.1850854 |
33 | NI J E, CASE E D, SAKAMOTO J S, et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet[J]. Journal of Materials Science, 2012, 47(23): 7978-7985. |
34 | YU S, SCHMIDT R D, GARCIA-MENDEZ R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2016, 28(1): 197-206. |
35 | PORZ L, SWAMY T, SHELDON B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): doi: 10.1002/aenm.201701003. |
36 | YU S, SIEGEL D J. Grain boundary softening: A potential mechanism for lithium metal penetration through stiff solid electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38151-38158. |
37 | RAJ R, WOLFENSTINE J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries[J]. Journal of Power Sources, 2017, 343: 119-126. |
38 | HAN F, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. |
39 | CHENG E J, SHARAFI A, SAKAMOTO J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte[J]. Electrochimica Acta, 2017, 223: 85-91. |
40 | LIU B, ZHANG L, XU S, et al. 3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries[J]. Energy Storage Materials, 2018, 14: 376-382. |
41 | WANG J, WANG H, XIE J, et al. Fundamental study on the wetting property of liquid lithium[J]. Energy Storage Materials, 2018, 14: 345-350. |
42 | SHAO Y J, WANG H C, GONG Z L, et al. Drawing a soft interface: An effective interfacial modification strategy for garnet-type solid-state Li batteries[J]. ACS Energy Letters, 2018, 3(6): 1212-1218. |
43 | FU K K, GONG Y, LIU B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): doi: 10.1126/sciadv.1601659. |
44 | HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
45 | SHI K, WAN Z, YANG L, et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie, 2020, 59(29): 11784-11788. |
46 | DUAN H, YIN Y X, SHI Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140(1): 82-85. |
47 | LIU B Y, GONG Y H, FU K, et al. Garnet solid electrolyte protected Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18809-18815. |
48 | CHEN S, ZHANG J, NIE L, et al. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte[J]. Advanced Materials, 2021, 33(1): doi: 10.1002/adma.202002325. |
49 | ZHOU D, REN G X, ZHANG N, et al. Garnet electrolytes with ultralow interfacial resistance by SnS2 coating for dendrite-free all-solid-state batteries[J]. ACS Applied Energy Materials, 2021, 4(3): 2873-2880. |
50 | PERVEZ S A, KIM G, VINAYAN B P, et al. Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers[J]. Small, 2020, 16(14): doi: 10.1002/smll.202070078. |
51 | DENG T, JI X, ZHAO Y, et al. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries[J]. Advanced Materials, 2020, 32(23): doi: 10.1002/adma.202000030. |
52 | SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources, 2016, 302: 135-139. |
53 | HUO H Y, LUO J, THANGADURAI V, et al. Li2CO3: A critical issue for developing solid garnet batteries[J]. ACS Energy Letters, 2020, 5(1): 252-262. |
54 | SHARAFI A, KAZYAK E, DAVIS A L, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12[J]. Chemistry of Materials, 2017, 29(18): 7961-7968. |
55 | WANG C, XIE H, PING W, et al. A general, highly efficient, high temperature thermal pulse toward high performance solid state electrolyte[J]. Energy Storage Materials, 2019, 17: 234-241. |
56 | LI Y T, CHEN X, DOLOCAN A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455. |
57 | HUO H, CHEN Y, ZHAO N, et al. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61: 119-125. |
58 | ALEXANDER G V, PATRA S, SOBHAN S, et al. Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors[J]. Journal of Power Sources, 2018, 396: 764-773. |
59 | KRAUSKOPF T, HARTMANN H, ZEIER W G, et al. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—An electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14463-14477. |
60 | WANG C, XIE H, ZHANG L, et al. Universal soldering of lithium and sodium alloys on various substrates for batteries[J]. Advanced Energy Materials, 2018, 8(6): doi: 10.1002/aenm.201701963. |
61 | LI S, WANG H, CUTHBERT J, et al. A semiliquid lithium metal anode[J]. Joule, 2019, 3(7): 1637-1646. |
[1] | 王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946. |
[2] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[3] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[4] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[5] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[6] | 赵志伟, 杨智, 彭章泉. 飞行时间二次离子质谱在锂基二次电池中的应用[J]. 储能科学与技术, 2022, 11(3): 781-794. |
[7] | 甘露雨, 陈汝颂, 潘弘毅, 吴思远, 禹习谦, 李泓. 锂电池安全性多尺度研究策略:实验与模拟方法[J]. 储能科学与技术, 2022, 11(3): 852-865. |
[8] | 杜昭, 阳康, 舒高, 韦攀, 杨肖虎. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. |
[9] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[10] | 翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁. 溶剂热法合成三维花瓣状石榴石型固态电解质及其在固态聚合物电解质中的应用[J]. 储能科学与技术, 2021, 10(3): 905-913. |
[11] | 池上森, 姜益栋, 王庆荣, 叶子威, 余凯, 马骏, 靳俊, 王军, 王朝阳, 温兆银, 邓永红. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(3): 914-924. |
[12] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[13] | 牟粤, 杜韫, 明海, 张松通, 邱景义. 锂离子电池正极材料本体结构演变及界面行为研究方法[J]. 储能科学与技术, 2021, 10(1): 7-26. |
[14] | 张晶晶, 崔孝玲, 赵冬妮, 杨莉, 王洁. 高浓度电解液对电极/电解液界面的影响[J]. 储能科学与技术, 2021, 10(1): 143-149. |
[15] | 林乙龙, 肖敏, 韩东梅, 王拴紧, 孟跃中. 锂离子电池化成技术研究进展[J]. 储能科学与技术, 2021, 10(1): 50-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||