储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 863-871.doi: 10.19799/j.cnki.2095-4239.2021.0085

• 固态离子学与储能专刊 • 上一篇    下一篇

石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展

张赛赛1,2(), 赵海雷1,2()   

  1. 1.北京科技大学材料科学与工程学院
    2.新能源材料与技术北京市重点实验室,北京 100083
  • 收稿日期:2021-03-08 修回日期:2021-04-01 出版日期:2021-05-05 发布日期:2021-04-30
  • 通讯作者: 赵海雷 E-mail:zhang.sai.sai@163.com;hlzhao@ustb.edu.cn
  • 作者简介:张赛赛(1992—),女,博士研究生,主要研究方向为石榴石型锂离子固态电解质,E-mail:zhang.sai.sai@163.com
  • 基金资助:
    国家自然科学基金项目(51634003);国家重点研发计划项目(2018YFB0905600)

Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress

Saisai ZHANG1,2(), Hailei ZHAO1,2()   

  1. 1.School of Materials Science and Engineering, University of Science and Technology Beijing
    2.Beijing Municipal Key Laboratory of New Energy Materials and Technologies, Beijing 100083, China
  • Received:2021-03-08 Revised:2021-04-01 Online:2021-05-05 Published:2021-04-30
  • Contact: Hailei ZHAO E-mail:zhang.sai.sai@163.com;hlzhao@ustb.edu.cn

摘要:

固态锂金属电池具有高能量密度、高安全性、宽工作温度范围、长服役寿命等优势,是下一代锂电池体系的重要发展方向之一。作为典型的氧化物固态电解质,Li7La3Zr2O12(LLZO)具有锂离子电导率高、电化学窗口较宽、机械强度高和热稳定性好等优点,因此LLZO固态锂金属电池受到业界的广泛关注。但是,LLZO固态锂金属电池还存在锂枝晶穿透固态电解质生长造成电池短路、电解质/电极界面电阻过高等问题,影响其实际应用。这些问题与LLZO的显微结构特征、正极材料与LLZO的化学和电化学相容性、正极与电解质的界面结合性、金属锂负极对LLZO的浸润性等因素有关。本文总结了以上问题的解决策略。对于正极侧,通过活性颗粒表面包覆、三维固态电解质界面构筑、柔性聚合物或凝胶电解质中间层引入、正极活性颗粒与柔性或黏性离子传导材料复合等手段,可改善正极与LLZO的相容性,并降低正极界面电阻。对于负极界面,消除LLZO电解质表面碳酸锂、引入反应活性或柔性中间层、调控金属锂负极组成等方法,可改善锂对LLZO的浸润性,降低负极界面电阻。最后,本文对未来研究和发展方向给出了建议。

关键词: Li7La3Zr2O12, 石榴石型固态电解质, 固态电池, 电化学窗口, 界面

Abstract:

Due to its high energy density, high safety, wide working temperature range, and long service life, solid-state lithium metal battery has been one of the important development directions of next-generation lithium batteries. As a typical oxide solid electrolyte, Li7La3Zr2O12 (LLZO) presents high lithium-ion conductivity, wide electrochemical window, high mechanical strength, and good thermal stability. Thus, LLZO solid-state lithium metal batteries have attracted significant attention in academic and industrial fields. However, the possible formation of lithium dendrite through the solid electrolyte and the large interface resistance between electrolyte and electrode limit severely its practical deployment. These issues are correlated with the microstructural characteristics of LLZO electrolyte, the chemical and electrochemical compatibility between cathode and LLZO, the solid contact at the cathode/electrolyte interface, and the wettability of lithium anode with LLZO electrolyte. This study reviews the reported advancements and summaries the strategies to solve these problems. For the cathode, the compatibility between the positive electrode and LLZO, and interface resistance can be improved by means of the surface coating of the cathode active particles, the construction of 3D electrolyte interface, the introduction of a flexible polymer or gel electrolyte as interlayer, and composition of positive active particles with flexible or viscous ionic conductive materials. For the anode interface, eliminating the lithium carbonate on the surface of LLZO electrolyte, introducing reactive or flexible intermediate layer, and modulating the lithium anode composition can improve the wettability of lithium to LLZO electrolyte; thus, reducing the interface resistance. Finally, the future research direction and perspective of LLZO-based solid-state battery is proposed.

Key words: Li7La3Zr2O12, garnet-type solid electrolyte, solid-state battery, electrochemical window, interfaces

中图分类号: