储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 821-835.doi: 10.19799/j.cnki.2095-4239.2021.0057
闫汶琳1,2,3,4(), 吴凡1,2,3,4(), 李泓1,2,3,4, 陈立泉1,2,3,4
收稿日期:
2021-02-07
修回日期:
2021-02-22
出版日期:
2021-05-05
发布日期:
2021-04-30
通讯作者:
吴凡
E-mail:1152841213@qq.com;fwu@iphy.ac.cn
作者简介:
闫汶琳(1997—),女,硕士研究生,主要研究方向为含Si负极在硫化物全固态电池中的应用,E-mail:基金资助:
Wenlin YAN1,2,3,4(), Fan WU1,2,3,4(), Hong LI1,2,3,4, Liquan CHEN1,2,3,4
Received:
2021-02-07
Revised:
2021-02-22
Online:
2021-05-05
Published:
2021-04-30
Contact:
Fan WU
E-mail:1152841213@qq.com;fwu@iphy.ac.cn
摘要:
硫化物固态电解质具有超高离子电导率和优良力学性能,是实现全固态电池最有希望的技术路线之一。为进一步提高硫化物全固态电池的能量密度,促进其应用,理论比容量接近石墨10倍(3759 mA·h/g)的硅负极材料具有极佳的应用前景。并且Si负极和硫化物固态电解质结合,可规避Si负极在液态电池中重复生成固态电解质界面层(SEI)的问题,充分发挥Si负极的高容量,同时利用硫化物较好的力学性能缓冲硅负极巨大的体积膨胀,改善固固接触,促进离子扩散,有望实现高能量密度电池的长效循环。虽然含Si负极硫化物全固态电池极具实用前景,但是目前研究尚处于起步阶段,缺少成熟有效的表征手段和对基础科学问题的深入理解,全电池性能较差、容量衰减过快、比能量还有很大提升空间。为加速推进含Si负极硫化物全固态电池的研究进程,本文总结了近年来该领域的相关工作,分类论述了3种类型的含Si负极硫化物全固态电池(粉饼电池、湿法涂覆电池、薄膜电池),综合分析了影响其性能的关键因素,并阐明通过减小Si的颗粒尺寸、外加应力、设置合适的截止电压、调控硫化物电解质的杨氏模量等手段可以有效优化含Si负极硫化物全固态电池的性能。最后,本文分析了目前该领域面临的问题和挑战,指出未来发展趋势。
中图分类号:
闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835.
Wenlin YAN, Fan WU, Hong LI, Liquan CHEN. Application of Si-based anodes in sulfide solid-state batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 821-835.
1 | LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Advanced Energy Materials, 2018, 8(27): doi: 10.1002/aenm.201800933. |
2 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): doi: 10.1038/nenergy.2016.30. |
3 | WU F, FITZHUGH W, YE L H, et al. Advanced sulfide solid electrolyte by core-shell structural design[J]. Nature Communications, 2018, 9(1): doi: 10.1038/s41467-018-06123-2. |
4 | SHARMA R A, SEEFURTH R N. Thermodynamic properties of the lithium-silicon system[J]. Journal of the Electrochemical Society, 1976, 123(12): 1763-1768. |
5 | OBROVAC M N, KRAUSE L J. Reversible cycling of crystalline silicon powder[J]. Journal of the Electrochemical Society, 2007, 154(2): A103-A108. |
6 | TAO W, WANG P, YOU Y, et al. Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries[J]. Nano Research, 2019, 12(8): 1739-1749. |
7 | KO M, CHAE S, JEONG S, et al. Elastica-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano, 2014, 8(8): 8591-8599. |
8 | ZHANG F Z, YANG J P. Boosting initial coulombic efficiency of Si-based anodes: A review[J]. Emergent Materials, 2020, 3(3): 369-380. |
9 | 罗飞, 褚赓, 黄杰, 等. 锂离子电池基础科学问题(Ⅷ)——负极材料[J]. 储能科学与技术, 2014, 3(2): 146-163. |
LUO F, CHU G, HUANG J, et al. Fundamental scientific aspects of lithium batteries (Ⅷ)—Anode electrode materials[J]. Energy Storage Science and Technology, 2014, 3(2): 146-163. | |
10 | BOUKAMP B A, LESH G C, HUGGINS R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of Electrochemical Society, 1981, 128(4): 725-729. |
11 | ZHU B, WANG X Y, YAO P C, et al. Towards high energy density lithium battery anodes: Silicon and lithium[J]. Chemical Science, 2019, 10(30): 7132-7148. |
12 | LIU L L, XU J R, WANG S, et al. Practical evaluation of energy densities for sulfide solid-state batteries[J]. eTransportation, 2019, 1: doi: 10.1016/j.etran.2019.100010. |
13 | TREVEY J E, JANG J S, JUNG Y S, et al. Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(9): 1830-1833. |
14 | TREVEY J E, RASON K W, STOLDT C R, et al. Improved performance of all-solid-state lithium-ion batteries using nanosilicon active material with multiwalled-carbon-nanotubes as a conductive additive[J]. Electrochemical and Solid-State Letters, 2010, 13(11): doi: 10.1149/1.3479551. |
15 | WANG J, TREVEY J E, LEE S H. All-solid-state 3-D rechargeable lithium batteries with silicon rod structured electrode[J]. 2010, https://www.researchgate.net/publication/229004564_All-solid-state_3-D _rechargeable_lithium_batteries_with_silicon_rod_structured_electrode. |
16 | SON S B, TREVEY J E, ROH H et al. Microstructure study of electrochemically driven LixSi[J]. Advanced Energy Materials, 2011, 1(6): 1199-1204. |
17 | TREVEY J E, WANG J, DELUCA C M, et al. Nanostructured silicon electrodes for solid-state 3-d rechargeable lithium batteries[J]. Sensors and Actuators A: Physical, 2011, 167(2): 139-145. |
18 | PIPER D M, YERSAK T A, LEE S H. Effect of compressive stress on electrochemical performance of silicon anodes[J]. Journal of the Electrochemical Society, 2012, 160(1): A77-A81. |
19 | YERSAK T A, SON S B, CHO J S, et al. An all-solid-state Li-ion battery with a pre-lithiated Si-Ti-Ni alloy anode[J]. Journal of the Electrochemical Society, 2013, 160(9): A1497-A1501. |
20 | WHITELEY J M, KIM J W, PIPER D M, et al. High-capacity and highly reversible silicon-tin hybrid anode for solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(2): A251-A254. |
21 | YERSAK T A, SHIN J W, WANG Z Y, et al. Preparation of mesoporous Si@PAN electrodes for Li-ion batteries via the in-situ polymerization of PAN[J]. ECS Electrochemistry Letters, 2015, 4(3): A33-A36. |
22 | DUNLAP N A, KIM S, JEONG J J, et al. Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries[J]. Solid State Ionics, 2018, 324: 207-217. |
23 | KIM K B, DUNLAP N A, HAN S S, et al. Nanostructured Si/C fibers as a highly reversible anode material for all-solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(9): A1903-A1908. |
24 | DUNLAP N A, KIM J, GUTHERY H, et al. Towards the commercialization of the all-solid-state Li-ion battery: Local bonding structure and the reversibility of sheet-style Si-PAN anodes[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab84fc. |
25 | CERVERA R B, SUZUKI N, OHNISHI T, et al. High performance silicon-based anodes in solid-state lithium batteries[J]. Energy & Environmental Science, 2014, 7(2): 662-666. |
26 | MIYAZAKI R, OHTA N, OHNISHI T, et al. An amorphous Si film anode for all-solid-state lithium batteries[J]. Journal of Power Sources, 2014, 272: 541-545. |
27 | MIYAZAKI R, OHTA N, OHNISHI T, et al. Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries[J]. Journal of Power Sources, 2016, 329: 41-49. |
28 | SAKABE J, OHTA N, OHNISHI T, et al. Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries[J]. Communications Chemistry, 2018, 1(1): 1-9. |
29 | OHTA N, KIMURA S, SAKABE J, et al. Anode properties of Si nanoparticles in all-solid-state Li batteries[J]. ACS Applied Energy Materials, 2019, 2(10): 7005-7008. |
30 | OKUNO R, YAMAMOTO M, TERAUCHI Y, et al. Stable cyclability of porous Si anode applied for sulfide-based allsolid-state batteries[J]. Energy Procedia, 2019, 156: 183-186. |
31 | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability[J]. Journal of Power Sources, 2018, 402: 506-512. |
32 | OKUNO R, YAMAMOTO M, KATO A, et al. Microstructures of nanoporous-Si composite anodes in sulfide-based all-solid-state lithium-ion batteries[J]. IOP Conference Series: Materials Science and Engineering, 2019, 625(1): doi: 10.1088/1757-899X/625/1/012012. |
33 | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries[J]. Journal of Power Sources, 2020, 473: doi: 10.1016/j.jpowsour.2020.228595. |
34 | NAM Y J, PARK K H, OH D Y, et al. Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells[J]. Journal of Materials Chemistry A, 2018, 6(30): 14867-14875. |
35 | KIM D H, LEE H A, SONG Y B, et al. Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2019, 426: 143-150. |
36 | XU X Y, CHENG J, LI Y Y, et al. Li metal-free rechargeable all-solid-state Li2S/Si battery based on Li7P3S11 electrolyte[J]. Journal of Solid State Electrochemistry, 2019, 23(11): 3145-3151. |
37 | KATO A, YAMAMOTO M, SAKUDA A, et al. Mechanical properties of Li2S-P2S5 glasses with lithium halides and application in all-solid-state batteries[J]. ACS Applied Energy Materials, 2018, 1(3): 1002-1007. |
38 | LEE K S, LEE Y N, YOON Y S. Effect of carbon content on nanocomposite Si(1-x)Cx thin film anode for all-solid-state battery[J]. Electrochimica Acta, 2014, 147: 232-240. |
39 | PARK A R, KIM J S, KIM K S, et al. Si-Mn/reduced graphene oxide nanocomposite anodes with enhanced capacity and stability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1702-1708. |
40 | BUCCI G, SWAMY T, BISHOP S, et al. The effect of stress on battery-electrode capacity[J]. Journal of the Electrochemical Society, 2017, 164(4): A645-A654. |
41 | CANGAZ S, HIPPAUF F, REUTER F S, et al. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes[J]. Advanced Energy Materials, 2020, 10(34): doi: 10.1002/aenm.202001320. |
42 | PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Advanced Energy Materials, 2018, 8(18): doi: 10.1002/aenm.201800035. |
43 | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities[J]. Scientific Reports, 2018, 8(1): doi: 10.1038/s41598-018-19398-8. |
44 | FITZHUGH W, WU F, YE L H, et al. Strain-stabilized ceramic-sulfide electrolytes[J]. Small, 2019: doi: 10.1002/smll.201901470. |
45 | WHITELEY J M, KIM J W, KANG C S, et al. Tin networked electrode providing enhanced volumetric capacity and pressureless operation for all-solid-state Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(4): A711-A715. |
46 | SAKUDA A, HAYASHI A, TATSUMISAGO M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery[J]. Scientific Reports, 2013, 3: 1-5. |
47 | XU J R, LIU L L, YAO N, et al. Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes and all-solid-state batteries[J]. Materials Today Nano, 2019, 8: doi: 10.1016/j.mtnano.2019.100048. |
48 | XU X Y, CHENG J, LI Y Y, et al. Li metal-free rechargeable all-solid-state Li2S/Si battery based on Li7P3S11 electrolyte[J]. Journal of Solid State Electrochemistry, 2019, 23(11): 3145-3151. |
49 | ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. |
50 | RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
51 | ZHU B, LIU G, LV G, et al. Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes[J]. Science Advances, 2019, 5(11): doi: 10.1126/sciadv.aax0651. |
52 | WETJEN M, SOLCHENBACH S, PRITZL D, et al. Morphological changes of silicon nanoparticles and the influence of cutoff potentials in silicon-graphite electrodes[J]. Journal of the Electrochemical Society, 2018, 165(7): A1503-A1514. |
53 | CHAE S, KO M, KIM K, et al. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries[J]. Joule, 2017, 1(1): 47-60. |
54 | CHO J. Porous Si anode materials for lithium rechargeable batteries[J]. Journal of Materials Chemistry, 2010, 20(20): 4009-4014. |
55 | 周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2): 569-582. |
ZHOU J H, LUO F, CHU G, et al. Research progress on nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. | |
56 | SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1(7): 1-12. |
57 | ZUO X X, ZHU J, MÜLLER-BUSCHBAUM P, et al. Silicon based lithium-ion battery anodes: A chronicle perspective review[J]. Nano Energy, 2017, 31: 113-143. |
58 | DENG S X, SUN Y P, LI X, et al. Eliminating the detrimental effects of conductive agents in sulfide-based solid-state batteries[J]. ACS Energy Letters, 2020, 5(4): 1243-1251. |
59 | FITZHUGH W, WU F, YE L H, et al. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J]. Advanced Energy Materials, 2019, 9(21): doi: 10.1002/aenm.201900807. |
60 | CHAE S, CHOI S H, KIM N, et al. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries[J]. Angewandte Chemie, 2020, 59(1): 110-135. |
61 | LOPEZ J, MACKANIC D G, CUI Y, et al. Designing polymers for advanced battery chemistries[J]. Nature Reviews Materials, 2019, 4(5): 312-330. |
62 | CHEN H, LING M, HENCZ L, et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices[J]. Chemical Reviews, 2018, 118(18): 8936-8982. |
63 | 王晓钰, 张渝, 马磊, 等. 锂离子电池硅基负极粘结剂发展现状[J]. 化学学报, 2019, 77(1): 24-40. |
WANG X Y ZHANG Y, MA L, et al. Recent development on binders for silicon-based anodes in lithium-ion batteries[J]. Acta Chimica Sinica, 2019, 77(1): 24-40. | |
64 | LEE K, KIM S, PARK J, et al. Selection of binder and solvent for solution-processed all-solid-state battery[J]. Journal of the Electrochemical Society, 2017, 164(9): A2075-A2081. |
65 | SAKUDA A, KURATANI K, YAMAMOTO M, et al. All-solid-state battery electrode sheets prepared by a slurry coating process[J]. Journal of the Electrochemical Society, 2017, 164(12): A2474-A2478. |
66 | RIPHAUS N, STROBL P, STIASZNY B, et al. Slurry-based processing of solid electrolytes: A comparative binder study[J]. Journal of the Electrochemical Society, 2018, 165(16): A3993-A3999. |
67 | TAN D, BANERJEE A, DENG Z, et al. Enabling thin and flexible solid-state composite electrolytes by the scalable solution process[J]. ACS Applied Energy Materials, 2019, 2(9): 6542-6550. |
[1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[2] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[3] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
[4] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[5] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[6] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
[7] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. |
[8] | 高永晟, 陈光海, 王欣然, 白莹, 吴川. 钠离子电池电解质安全性:改善策略与研究进展[J]. 储能科学与技术, 2020, 9(5): 1309-1317. |
[9] | 贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1266-1283. |
[10] | 位广玲, 江颖, 周佳辉, 王紫恒, 黄永鑫, 谢嫚, 吴锋. 钠离子电池金属氧/硫/硒化物负极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1318-1326. |
[11] | 高鹏, 张珊, 贲留斌, 赵文武, 刘中柱, 朱永明, 黄学杰. 铌元素在锂离子电池中的应用[J]. 储能科学与技术, 2020, 9(5): 1443-1453. |
[12] | 高舒, 周敏, 韩静, 过聪, 谭媛, 蒋凯, 王康丽. 钠离子电池聚合物电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1300-1308. |
[13] | 彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
[14] | 马梦莹, 潘慧霖, 胡勇胜. 非水系钠离子电池的电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1234-1250. |
[15] | 周洪, 魏凤, 吴永庆. 基于专利的无机固态锂电池电解质技术发展研究[J]. 储能科学与技术, 2020, 9(3): 1001-1007. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||