储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1370-1382.doi: 10.19799/j.cnki.2095-4239.2020.0180
彭林峰1,2(), 贾欢欢1,3, 丁庆4, 赵宇明4, 谢佳1(), 程时杰1
收稿日期:
2020-05-17
修回日期:
2020-06-28
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
谢佳
E-mail:511574845@qq.com;xiejia@hust.edu.cn
作者简介:
彭林峰(1989—),男,博士研究生,主要研究方向为固态电池与固态电解质,E-mail:基金资助:
Linfeng PENG1,2(), Huanhuan JIA1,3, Qing DING4, Yuming ZHAO4, Jia XIE1(), Shijie CHENG1
Received:
2020-05-17
Revised:
2020-06-28
Online:
2020-09-05
Published:
2020-09-08
Contact:
Jia XIE
E-mail:511574845@qq.com;xiejia@hust.edu.cn
摘要:
锂离子电池的迅速发展导致锂价格上涨,另外,锂资源地壳储量低且分布不均,引起了人们对锂离子电池替代品的研究。钠资源丰富且与锂有相似的化学性质,使得钠离子电池受到广泛关注。基于不可燃无机固态电解质的固态钠电池,兼具高安全和低成本的优势,成为规模化储能领域非常有前景的储能器件。经过不懈努力,适用于固态钠电池的电解质已经被陆续开发,包括常见的β-Al2O3、NASICON型、硫化物型固态电解质以及新型富钠反钙钛矿和复合氢化物等。这些钠离子固态电解质经过合成条件优化、元素取代或置换、结构调控等手段,室温离子电导率可达10-3 S/cm以上,已经完全可满足实用需求。但是,固态钠电池的实际应用依然受到较大挑战,主要是固态电池中电解质与正负极材料间的化学、电化学相容性差,以及固-固界面接触问题。本文通过梳理近些年与固态钠电池相关的研究,总结了不同类型固态电解质应用到固态钠电池过程中遇到的机遇和挑战,以及相应解决策略,同时讨论了固态钠电池未来可能的发展方向和趋势。总的来说,主要通过引入离子液体或聚合物、多孔结构设计、电解质包覆,以及复合正极设计等方式,提升固态钠电池电化学稳定性。
中图分类号:
彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382.
Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors[J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382.
1 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5: 229-252. |
2 | NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
3 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
4 | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. |
5 | CHAYAMBUKA K, MULDER G, DANILOV D L, et al. Sodium-ion battery materials and electrochemical properties reviewed[J]. Advanced Energy Materials, 2018, 8(16): doi: 10.1002/aenm.201800079. |
6 | KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie-International Edition, 2015, 54(11): 3431-3448. |
7 | BONES R J, TEAGLE D A, BROOKER S D, et al. Development of a Ni, NiCl2 positive electrode for a liquid sodium(zebra) battery cell[J]. Journal of the Electrochemical Society, 1989, 136(5): 1274-1277. |
8 | DUSTMANN C H. Advances in zebra batteries[J]. Journal of Power Sources, 2004, 127(1): 85-92. |
9 | HU Y S. Batteries: Getting solid[J]. Nature Energy, 2016, 1(4): doi: 10.1038/nenergy.2016.42. |
10 | HUESO K B, PALOMARES V, ARMAND M, et al. Challenges and perspectives on high and intermediate-temperature sodium batteries[J]. Nano Research, 2017, 10(12): 4082-4114. |
11 | ZHANG Z Z, SHAO Y J, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976. |
12 | 徐来强, 李佳阳, 刘城, 等. 无机钠离子电池固体电解质研究进展[J]. 物理化学学报, 2020, 36(5): doi: 10.3866/PKU.WHXB201905013. |
XU L Q, LI J Y, LIU C, et al. Research progress in inorganic solid-state electrolytes for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): doi: 10.3866/PKU.WHXB201905013. | |
13 | 陈光海, 白莹, 高永晟, 等. 全固态钠离子电池硫系化合物电解质[J]. 物理化学学报, 2020, 36(5): doi: 10.3866/PKU.WHXB201905009. |
CHEN G H, BAI Y, GAO Y S, et al. Chalcogenide electrolytes for all-solid-state sodium ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): doi: 10.3866/PKU.WHXB201905009. | |
14 | 刘丽露, 戚兴国, 邵元骏, 等. 钠离子固体电解质材料研究进展[J]. 储能科学与技术, 2017, 6(5): 961-980. |
LIU L L, QI X G, SHAO Y J, et al. Research progress on sodium ion solid-state electrolytes[J]. Energy Storage Science and Technology, 2017, 6(5): 961-980. | |
15 | ZHOU C, BAG S, THANGADURAI V, et al. Engineering materials for progressive all-solid-state Na batteries[J]. ACS Energy Letters, 2018, 3(9): 2181-2198. |
16 | TIAN Y, SHI T, RICHARDS W D, et al. Compatibility issues between electrodes and electrolytes in solid-state batteries[J]. Energy & Environmental Science, 2017, 10(5): 1150-1166. |
17 | WENZEL S, LEICHTWEISS T, WEBER D A, et al. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium beta-alumina for protected sodium metal anodes and sodium all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 28216-28224. |
18 | TANG H, DENG Z, LIN Z, et al. Probing solid-solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations[J]. Chemistry of Materials, 2017, 30(1): 163-173. |
19 | HOU W R, GUO X W, SHEN X Y, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279-291. |
20 | ZHAO C, LIU L, QI X, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201703012. |
21 | LU X C, XIA G G, LEMMON J P, et al. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives[J]. Journal of Power Sources, 2010, 195(9): 2431-2442. |
22 | KOGANEI K, OYAMA T, INADA M, et al. C-axis oriented beta''-alumina ceramics with anisotropic ionic conductivity prepared by spark plasma sintering[J]. Solid State Ionics, 2014, 267: 22-26. |
23 | HUESO K B, ARMAND M, ROJO T, et al. High temperature sodium batteries: Status, challenges and future trends[J]. Energy & Environmental Science, 2013, 6(3): 734-749. |
24 | CHANG H J, LU X, BONNETT J F, et al. Decorating β′′-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures[J]. Journal of Materials Chemistry A, 2018, 6(40): 19703-19711. |
25 | ZHAO K, LIU Y, ZHANG S M, et al. A room temperature solid-state rechargeable sodium ion cell based on a ceramic Na-beta"-Al2O3 electrolyte and NaTi2(PO4)3 cathode[J]. Electrochemistry Communications, 2016, 69: 59-63. |
26 | LEI D, HE Y B, HUANG H, et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-11960-w. |
27 | LIU L L, QI X G, MA Q, et al. Toothpaste-like electrode: A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32631-32636. |
28 | KIM I, PARK J Y, KIM C H, et al. A room temperature Na/S battery using a β″-alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode[J]. Journal of Power Sources, 2016, 301: 332-337. |
29 | CHI X W, HAO F, ZHANG J B, et al. A high-energy quinone-based all-solid-state sodium metal battery[J]. Nano Energy, 2019, 62: 718-724. |
30 | KEHNE P, GUHL C, ALFF L, et al. The effect of calcium impurities of β″-alumina on the degradation of NaxCoO2 cathodes in all solid state sodium-ion batteries[J]. Solid State Ionics, 2019, 341: doi: 10.1016/j.ssi.2019.115041. |
31 | JUNG K, CHANG H J, BONNETT J F, et al. An advanced Na-NiCl2 battery using bi-layer(dense/micro-porous) β″-alumina solid-state electrolytes[J]. Journal of Power Sources, 2018, 396: 297-303. |
32 | BAY M C, WANG M, GRISSA R, et al. Sodium plating from Na-β″-alumina ceramics at room temperature, paving the way for fast-charging all-solid-state batteries[J]. Advanced Energy Materials, 2020, 10(3): doi: 10.1002/aenm.201902899. |
33 | ZHOU W, LI Y, XIN S, et al. Rechargeable sodium all-solid-state battery[J]. ACS Central Science, 2017, 3(1): 52-57. |
34 | LALÈRE F, LERICHE J B, COURTY M, et al. An all-solid state NASICON sodium battery operating at 200 ℃[J]. Journal of Power Sources, 2014, 247: 975-980. |
35 | YANG J, WAN H L, ZHANG Z H, et al. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries[J]. Rare Metals, 2018, 37(6): 480-487. |
36 | LU Y, ALONSO J A, YI Q, et al. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte[J]. Advanced Energy Materials, 2019, 9(28): doi: 10.1002/aenm.201901205. |
37 | KEHNE P, GUHL C, MA Q, et al. Sc-substituted NASICON solid electrolyte for an all-solid-state NaxCoO2/NASICON /Na sodium model battery with stable electrochemical performance[J]. Journal of Power Sources, 2019, 409: 86-93. |
38 | MA Q, TSAI C L, WEI X K, et al. Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S/cm and its primary applications in symmetric battery cells[J]. Journal of Materials Chemistry A, 2019, 7(13): 7766-7776. |
39 | ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7(4): doi: 10.1002/aenm.201601196. |
40 | GAO H, XUE L, XIN S, et al. A plastic-crystal electrolyte interphase for all-solid-state sodium batteries[J]. Angewandte Chemie-International Edition, 2017, 56(20): 5541-5545. |
41 | RUAN Y L, GUO F, LIU J J, et al. Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery[J]. Ceramics International, 2019, 45(2): 1770-1776. |
42 | LAN T, TSAI C L, TIETZ F, et al. Room-temperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials[J]. Nano Energy, 2019, 65: doi: 10.1016/j.nanoen.2019.104040. |
43 | MATIOS E, WANG H, WANG C, et al. Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5064-5072. |
44 | NOI K, NAGATA Y, HAKARI T, et al. Oxide-based composite electrolytes using Na3Zr2Si2PO12/Na3PS4 interfacial ion transfer[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19605-19614. |
45 | SUN H B, GUO J Z, ZHANG Y, et al. High-voltage all-solid-state Na-ion-based full cells enabled by all NASICON-structured materials[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24192-24197. |
46 | GAO H, XIN S, XUE L, et al. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte[J]. Chem, 2018, 4(4): 833-844. |
47 | ZHANG Z, ZHANG Q, REN C, et al. A ceramic/polymer composite solid electrolyte for sodium batteries[J]. Journal of Materials Chemistry A, 2016, 4(41): 15823-15828. |
48 | HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nature Communications, 2012, 3: doi: 10.1038/ncomms1843. |
49 | HAYASHI A, NOI K, TANIBATA N, et al. High sodium ion conductivity of glass ceramic electrolytes with cubic Na3PS4[J]. Journal of Power Sources, 2014, 258: 420-423. |
50 | WANG H, CHEN Y, HOOD Z D, et al. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure[J]. Angewandte Chemie-International Edition, 2016, 55(30): 8551-8555. |
51 | BANERJEE A, PARK K H, HEO J W, et al. Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2016, 55(33): 9634-9638. |
52 | DUCHARDT M, RUSCHEWITZ U, ADAMS S, et al. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12[J]. Angewandte Chemie-International Edition, 2018, 57(5): 1351-1355. |
53 | ZHANG Z, RAMOS E, LALERE F, et al. Na11Sn2PS12: A new solid state sodium superionic conductor[J]. Energy & Environmental Science, 2018, 11(1): 87-93. |
54 | JIA H H, SUN Y L, ZHANG Z R, et al. Group 14 element based sodium chalcogenide Na4Sn0.67Si0.33S4 as structure template for exploring sodium superionic conductors[J]. Energy Storage Materials, 2019, 23: 508-513. |
55 | JIA H, LIANG X, AN T, et al. Effect of halogen doping in sodium solid electrolytes based on the Na-Sn-Si-P-S quinary system[J]. Chemistry of Materials, 2020, 32(9): 4065-4071. |
56 | JIA H, PENG L, ZHANG Z, et al. Na3.8[Sn0.67Si0.33]0.8Sb0.2S4: A quinary sodium fast ionic conductor for all-solid-state sodium battery[J]. Journal of Energy Chemistry, 2020, 48: 102-106. |
57 | NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Letters, 2015, 15(5): 3317-3323. |
58 | PARK K H, OH D Y, CHOI Y E, et al. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries[J]. Advanced Materials, 2016, 28(9): 1874-1883. |
59 | HAYASHI A, MASUZAWA N, YUBUCHI S, et al. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-13178-2. |
60 | FUCHS T, CULVER S P, TILL P, et al. Defect-mediated conductivity enhancements in Na3-xPn1-xWxS4(Pn=P, Sb) using aliovalent substitutions[J]. ACS Energy Letters, 2020, 5(1): 146-151. |
61 | TANIBATA N, DEGUCHI M, HAYASHI A, et al. All-solid-state Na/S batteries with a Na3PS4 electrolyte operating at room temperature[J]. Chemistry of Materials, 2017, 29(12): 5232-5238. |
62 | WU E A, KOMPELLA C S, ZHU Z, et al. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: A joint experimental and computational study[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10076-10086. |
63 | CHU I H, KOMPELLA C S, NGUYEN H, et al. Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor[J]. Scientific Reports, 2016, 6(1): doi: 10.1038/srep33733. |
64 | WAN H, CAI L, WENG W, et al. Cobalt-doped pyrite for Na11Sn2SbS11.5Se0.5 electrolyte based all-solid-state sodium battery with enhanced capacity[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227515. |
65 | HEO J W, BANERJEE A, PARK K H, et al. New Na-ion solid electrolytes Na4-xSn1-xSbxS4(0.02≤x≤0.33) for all-solid-state Na-ion batteries[J]. Advanced Energy Materials, 2018, 8(11): doi: 10.1002/aenm.201702716. |
66 | HU P, ZHANG Y, CHI X, et al. Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9672-9678. |
67 |
ZHANG S, ZHAO Y, ZHAO F, et al. Gradiently sodiated alucone as an interfacial stabilizing strategy for solid-state Na metal batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/afma.202001118.
doi: 10.1002/afma.202001118 |
68 | TIAN Y, SUN Y, HANNAH D C, et al. Reactivity-guided interface design in Na metal solid-state batteries[J]. Joule, 2019, 3(4): 1037-1050. |
69 | WAN H, MWIZERWA J P, QI X, et al. Core-shell Fe1-xS@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density[J]. ACS Nano, 2018, 12(3): 2809-2817. |
70 | YUE J, ZHU X, HAN F, et al. Long cycle life all-solid-state sodium ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39645-39650. |
71 | KIM T W, PARK K H, CHOI Y E, et al. Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(3): 840-844. |
72 | FAN X L, YUE J, HAN F D, et al. High-performance all-solid-state Na-S battery enabled by casting-annealing technology[J]. ACS Nano, 2018, 12(4): 3360-3368. |
73 | NAGATA Y, NAGAO K, DEGUCHI M, et al. Amorphization of sodium cobalt oxide active materials for high-capacity all-solid-state sodium batteries[J]. Chemistry of Materials, 2018, 30(20): 6998-7004. |
74 | NASU A, OTOYAMA M, SAKUDA A, et al. Amorphous Na2TiS3 as an active material for all-solid-state sodium batteries[J]. Chemistry Letters, 2019, 48(3): 288-290. |
75 | HAO F, CHI X W, LIANG Y L, et al. Taming active material-solid electrolyte interfaces with organic cathode for all-solid-state batteries[J]. Joule, 2019, 3(5): 1349-1359. |
76 | CHI X W, LIANG Y L, HAO F, et al. Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries[J]. Angewandte Chemie-International Edition, 2018, 57(10): 2630-2634. |
77 | WAN H, MWIZERWA J P, HAN F, et al. Grain-boundary-resistance-less Na3SbS4-xSex solid electrolytes for all-solid-state sodium batteries[J]. Nano Energy, 2019, 66: doi:10.1016/j.nanoen.2019.104109. |
78 | WAN H, MWIZERWA J P, QI X, et al. Nanoscaled Na3PS4 solid electrolyte for all-solid-state FeS2/Na batteries with ultrahigh initial coulombic efficiency of 95% and excellent cyclic performances[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12300-12304. |
79 | RAO R P, CHEN H, WONG L L, et al. Na3+xMxP1-xS4(M=Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2-δ(SO4)3|Na3+xMxP1-xS4|Na2Ti3O7[J]. Journal of Materials Chemistry A, 2017, 5(7): 3377-3388. |
80 | WANG Y G, WANG Q F, LIU Z P, et al. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites[J]. Journal of Power Sources, 2015, 293: 735-740. |
81 | NGUYEN H, HY S, WU E, et al. Experimental and computational evaluation of a sodium-rich anti-perovskite for solid state electrolytes[J]. Journal of the Electrochemical Society, 2016, 163(10): A2165-A2171. |
82 | SUN Y L, WANG Y C, LIANG X M, et al. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4[J]. Journal of the American Chemical Society, 2019, 141(14): 5640-5644. |
83 | BRAGA M H, MURCHISON A J, FERREIRA J A, et al. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells[J]. Energy & Environmental Science, 2016, 9(3): 948-954. |
84 | BRAGA M H, FERREIRA J A, MURCHISON A J, et al. Electric dipoles and ionic conductivity in a Na+ glass electrolyte[J]. Journal of the Electrochemical Society, 2016, 164(2): A207-A213. |
85 | BRAGA M H, GRUNDISH N S, MURCHISON A J, et al. Alternative strategy for a safe rechargeable battery[J]. Energy & Environmental Science, 2017, 10(1): 331-336. |
86 | OGUCHI H, MATSUO M, KUROMOTO S, et al. Sodium-ion conduction in complex hydrides NaAlH4 and Na3AlH6[J]. Journal of Applied Physics, 2012, 111(3): doi: 10.1063/1.3681362. |
87 | YOSHIDA K, SATO T, UNEMOTO A, et al. Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery[J]. Applied Physics Letters, 2017, 110(10): doi: 10.1063/1.4977885. |
88 | LU Z H, CIUCCI F. Structural origin of the superionic na conduction in Na2B10H10 closo-borates and enhanced conductivity by Na deficiency for high performance solid electrolytes[J]. Journal of Materials Chemistry A, 2016, 4(45): 17740-17748. |
89 | KWEON K E, VARLEY J B, SHEA P, et al. Structural, chemical, and dynamical frustration: Origins of superionic conductivity in closoborate solid electrolytes[J]. Chemistry of Materials, 2017, 29(21): 9142-9153. |
90 | TANG W S, UNEMOTO A, ZHOU W, et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions[J]. Energy & Environmental Science, 2015, 8(12): 3637-3645. |
91 | TANG W S, MATSUO M, WU H, et al. Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures[J]. Energy Storage Materials, 2016, 4: 79-83. |
92 | TANG W S, MATSUO M, WU H, et al. Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201502237. |
93 | TANG W S, YOSHIDA K, SOLONININ A V, et al. Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts[J]. ACS Energy Letters, 2016, 1(4): 659-664. |
94 | DIMITRIEVSKA M, SHEA P, KWEON K E, et al. Carbon incorporation and anion dynamics as synergistic drivers for ultrafast diffusion in superionic LiCB11H12 and NaCB11H12[J]. Advanced Energy Materials, 2018, 8(15): doi: 10.1002/aenm.201703422. |
95 | CUAN J, ZHOU Y, ZHOU T, et al. Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes[J]. Advanced Materials, 2019, 31(1): doi: 10.1002/adma.201803533. |
96 | DUCHENE L, KUHNEL R S, STILP E, et al. A stable 3 V all-solid-state sodium-ion battery based on a closo-borate electrolyte[J]. Energy & Environmental Science, 2017, 10(12): 2609-2615. |
97 | ASAKURA R, DUCHENE L, KUHNEL R S, et al. Electrochemical oxidative stability of hydroborate-based solid state electrolytes[J]. ACS Applied Energy Materials, 2019, 2(9): 6924-6930. |
98 | PAYANDEH S, ASAKURA R, AVRAMIDOU P, et al. Nido-borate/closo-borate mixed-anion electrolytes for all-solid-state batteries[J]. Chemistry of Materials, 2020, 32(3): 1101-1110. |
99 | DUCHENE L, KUHNEL R S, RENTSCH D, et al. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture[J]. Chemical Communications, 2017, 53(30): 4195-4198. |
100 | DUCHENE L, LUNGHAMMER S, BURANKOVA T, et al. Ionic conduction mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-borate solid-state electrolyte: Interplay of disorder and ion-ion interactions[J]. Chemistry of Materials, 2019, 31(9): 3449-3460. |
101 | BRIGHI M, MURGIA F, LODZIANA Z, et al. A mixed anion hydroborate/carba-hydroborate as a room temperature Na-ion solid electrolyte[J]. Journal of Power Sources, 2018, 404: 7-12. |
102 | HE L Q, LIN H J, LI H F, et al. Na3NH2B12H12 as high performance solid electrolyte for all-solid-state Na-ion batteries[J]. Journal of Power Sources, 2018, 396: 574-579. |
[1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[2] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[3] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
[4] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[5] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[6] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[7] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[8] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
[9] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. |
[10] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
[11] | 高永晟, 陈光海, 王欣然, 白莹, 吴川. 钠离子电池电解质安全性:改善策略与研究进展[J]. 储能科学与技术, 2020, 9(5): 1309-1317. |
[12] | 贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1266-1283. |
[13] | 孙歌, 魏芷宣, 张馨元, 陈楠, 陈岗, 杜菲. 钠离子无机固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1251-1265. |
[14] | 高鹏, 张珊, 贲留斌, 赵文武, 刘中柱, 朱永明, 黄学杰. 铌元素在锂离子电池中的应用[J]. 储能科学与技术, 2020, 9(5): 1443-1453. |
[15] | 高舒, 周敏, 韩静, 过聪, 谭媛, 蒋凯, 王康丽. 钠离子电池聚合物电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1300-1308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||