储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1251-1265.doi: 10.19799/j.cnki.2095-4239.2020.0102

• 钠离子电池技术专刊 • 上一篇    下一篇

钠离子无机固体电解质研究进展

孙歌(), 魏芷宣, 张馨元, 陈楠(), 陈岗, 杜菲()   

  1. 新型电池物理与技术教育部重点实验室,吉林大学物理学院,吉林 长春 130012
  • 收稿日期:2020-03-10 修回日期:2020-03-31 出版日期:2020-09-05 发布日期:2020-09-08
  • 通讯作者: 陈楠,杜菲 E-mail:sunge18@mails.jlu.edu.cn;nanchen@jlu.edu.cn;dufei@jlu.edu.cn
  • 作者简介:孙歌(1995—),女,硕士研究生,主要研究方向固态电解质与全固态电池,E-mail:sunge18@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金(51972142);吉林省省校共建项目(SXGJQY2017-10);吉林省自然科学基金项目(20180101211-JC)

Recent progress of sodium-based inorganic solid electrolytes

Ge SUN(), Zhixuan WEI, Xinyuan ZHANG, Nan CHEN(), Gang CHEN, Fei DU()   

  1. Key Laboratory of Physics and Technology for Advanced Batteries,Ministry of Education, College of Physics, Jilin University, Changchun 130012, Jilin, China
  • Received:2020-03-10 Revised:2020-03-31 Online:2020-09-05 Published:2020-09-08
  • Contact: Nan CHEN,Fei DU E-mail:sunge18@mails.jlu.edu.cn;nanchen@jlu.edu.cn;dufei@jlu.edu.cn

摘要:

钠离子电池因储量丰富、成本低廉而成为可替代锂离子电池的储能设备之一,尤其是在大规模储能领域展现出了广阔的应用前景。然而,类似锂离子电池,以可燃的液态电解质作为离子传输媒介的钠离子电池也不可避免地面临着安全性的挑战。固态电解质的使用不仅可以大幅提升电池系统的安全性,与金属负极匹配更能进一步实现电池能量密度同步提升。在各类固态电解质中,无机固态电解质以高离子电导率和离子迁移数、高力学性能及稳定性等诸多优势而备受瞩目。尽管如此,在全固态钠电池的实际应用中,不同类型的无机固态电解质材料仍面临离子电导率低、化学与电化学稳定性差等不同困境。因此,无机固态电解质材料的研究和开发是实现固态钠电池应用的必经之路。本文介绍了离子在固体中的迁移机制,并综述了氧化物、硫化物以及络合氢化物钠离子固态电解质的研究进展,重点强调不同结构电解质离子电导率的提升策略和提高化学及电化学稳定性的方法,包括通过离子掺杂提升离子电导率,调控晶界处化学组分或利用低熔点添加剂降低钠的快离子导体(natrium super ionic conductor,NASICON)型电解质的晶界电阻,解决硫化物型电解质的空气敏感问题,开发新型硫化物超离子导体,降低络合氢化物的有序-无序相变温度同时提高室温离子电导率等。最后对固态电解质面临的关键挑战和未来发展趋势进行总结和展望。

关键词: 钠离子导体, 无机固体电解质, 离子电导率, 化学/电化学稳定性

Abstract:

Sodium-ion batteries have become a promising alternative energy storage device to lithium-ion batteries due to the abundance and low cost of sodium resources, especially for grid-scale energy storage systems. However, just like their lithium-ion batteries counterpart, sodium-ion batteries use a flammable liquid electrolyte as their ionic transportation medium, which inevitably leads to safety concerns. In this regard, solid electrolytes (SEs) can fundamentally resolve this issue due to their incombustibility. Besides, SEs can be paired with the metal anode directly, enhancing the energy density of the battery system. Compared to other types of SEs, inorganic SEs have attracted increasing attention owing to their high ionic conductivity, high ion transfer number, high mechanical properties, and excellent stability. However, in the practical application of all-solid-state sodium batteries, several inorganic SEs still face different difficulties such as low ionic conductivity and poor chemical/electrochemical stability. Therefore, the research and development of inorganic SEs is an important topic to realize the application of solid-state sodium batteries. In this paper, we introduce ion-migration mechanisms in solid materials and review the development of several of the most studied inorganic SEs: oxide, sulfide, and complex hydride electrolytes. Studies on solutions to enhance their ionic conductivity and chemical/electrochemical stability are discussed in detail, including the following aspects: enhancing ionic conductivity via ion doping; reducing the grain boundary resistance of NASICON-type SEs by controlling the chemical composition at the grain boundary or using a low-melting-point additive; solving the problem of the air sensitivity of sulfide-type SEs; developing new sulfide superionic conductors; and reducing the order-disorder phase transition temperature of complex hydride SEs and simultaneously increasing the ionic conductivity at room temperature. Finally, the key challenges and future developmental trends of SEs are summarized and discussed.

Key words: sodium-ion conductor, inorganic solid electrolyte, ionic conductivity, chemical/electrochemical stability

中图分类号: