储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1251-1265.doi: 10.19799/j.cnki.2095-4239.2020.0102
孙歌(), 魏芷宣, 张馨元, 陈楠(), 陈岗, 杜菲()
收稿日期:
2020-03-10
修回日期:
2020-03-31
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
陈楠,杜菲
E-mail:sunge18@mails.jlu.edu.cn;nanchen@jlu.edu.cn;dufei@jlu.edu.cn
作者简介:
孙歌(1995—),女,硕士研究生,主要研究方向固态电解质与全固态电池,E-mail:基金资助:
Ge SUN(), Zhixuan WEI, Xinyuan ZHANG, Nan CHEN(), Gang CHEN, Fei DU()
Received:
2020-03-10
Revised:
2020-03-31
Online:
2020-09-05
Published:
2020-09-08
Contact:
Nan CHEN,Fei DU
E-mail:sunge18@mails.jlu.edu.cn;nanchen@jlu.edu.cn;dufei@jlu.edu.cn
摘要:
钠离子电池因储量丰富、成本低廉而成为可替代锂离子电池的储能设备之一,尤其是在大规模储能领域展现出了广阔的应用前景。然而,类似锂离子电池,以可燃的液态电解质作为离子传输媒介的钠离子电池也不可避免地面临着安全性的挑战。固态电解质的使用不仅可以大幅提升电池系统的安全性,与金属负极匹配更能进一步实现电池能量密度同步提升。在各类固态电解质中,无机固态电解质以高离子电导率和离子迁移数、高力学性能及稳定性等诸多优势而备受瞩目。尽管如此,在全固态钠电池的实际应用中,不同类型的无机固态电解质材料仍面临离子电导率低、化学与电化学稳定性差等不同困境。因此,无机固态电解质材料的研究和开发是实现固态钠电池应用的必经之路。本文介绍了离子在固体中的迁移机制,并综述了氧化物、硫化物以及络合氢化物钠离子固态电解质的研究进展,重点强调不同结构电解质离子电导率的提升策略和提高化学及电化学稳定性的方法,包括通过离子掺杂提升离子电导率,调控晶界处化学组分或利用低熔点添加剂降低钠的快离子导体(natrium super ionic conductor,NASICON)型电解质的晶界电阻,解决硫化物型电解质的空气敏感问题,开发新型硫化物超离子导体,降低络合氢化物的有序-无序相变温度同时提高室温离子电导率等。最后对固态电解质面临的关键挑战和未来发展趋势进行总结和展望。
中图分类号:
孙歌, 魏芷宣, 张馨元, 陈楠, 陈岗, 杜菲. 钠离子无机固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1251-1265.
Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes[J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265.
1 | WANG D, BIE X, FU Q, et al. Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan[J]. Nat. Commun., 2017, 8: doi: 10.1038/ncomms15888. |
2 | WEI Z, MENG X, YAO Y, et al. Exploration of Ca0.5Ti2(PO4)3@carbon nanocomposite as the high-rate negative electrode for Na-ion batteries[J]. ACS Appl. Mater. Interfaces, 2016, 8(51): 35336-35341. |
3 | NIU Y B, YIN Y X, GUO Y G. Nonaqueous sodium-ion full cells: Status, strategies, and prospects[J]. Small, 2019, 15(32): doi: 10.1002/smll.201900233. |
4 | KIM J J, YOON K, PARK I, et al. Progress in the development of sodium-ion solid electrolytes[J]. Small Methods, 2017, 1(10): doi: 10.1002/smtd.201700219. |
5 | WANG Y, SONG S, XU C, et al. Development of solid-state electrolytes for sodium-ion battery-A short review[J]. Nano Materials Science, 2019, 1(2): 91-100. |
6 | ZHAO C, LIU L, QI X, et al. Solid-state sodium batteries[J]. Adv. Energy Mater., 2018, 8(17): doi: 10.1002/aenm.201703012. |
7 | LU Y, LI L, ZHANG Q, et al. Electrolyte and interface engineering for solid-state sodium batteries[J]. Joule, 2018, 2(9): 1747-1770. |
8 | ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy Environ. Sci., 2018, 11(8): 1945-1976. |
9 | CHEN S, CHE H, FENG F, et al. Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(46): 43056-43065. |
10 | LEHMANN M L, YANG G, GILMER D, et al. Tailored crosslinking of poly(ethylene oxide) enables mechanical robustness and improved sodium-ion conductivity[J]. Energy Stor. Mater., 2019, 21: 85-96. |
11 | YAO Y, WEI Z, WANG H, et al. Toward high energy density all solid-state sodium batteries with excellent flexibility[J]. Adv. Energy Mater., 2020, 10(12): doi: 10.1002/aenm.201903698. |
12 | LIU L, QI X, YIN S, et al. In situ formation of a stable interface in solid-state batteries[J]. ACS Energy Lett., 2019, 4(7): 1650-1657. |
13 | ZHU T, DONG X, LIU Y, et al. An all-solid-state sodium-sulfur battery using a sulfur/carbonized polyacrylonitrile composite cathode[J]. ACS Appl. Energy Mater., 2019, 2(7): 5263-5271. |
14 | XIE D, ZHANG M, WU Y, et al. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life[J]. Adv. Funct. Mater., 2019, 30(5): doi: 10.1002/adfm.201906770. |
15 | HU X, LI Z, ZHAO Y, et al. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes[J]. Sci. Adv., 2017, 3: doi: 10.1126/sciadv.1602396. |
16 | KIM J K, LIM Y J, KIM H, et al. A hybrid solid electrolyte for flexible solid-state sodium batteries[J]. Energy Environ. Sci., 2015, 8(12): 3589-3596. |
17 | ZHANG Z, ZHANG Q, REN C, et al. A ceramic/polymer composite solid electrolyte for sodium batteries[J]. J. Mater. Chem. A, 2016, 4(41): 15823-15828. |
18 | KUMMER J T, ARBOR A, WEBER N. Battery having a molten alkali metal anode and a molten sulfur cathode: US 58260866A[P]. 1968-11-26. |
19 | GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Mat. Res. Bull., 1976, 11: 203-220. |
20 | HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12[J]. Mat. Res. Bull., 1976, 11: 173-182. |
21 | KHIRESSINE H, FABRY P, CANEIRO A, et al. Optimization of NASICON composition for Na+ recognition[J]. Sens. Actuators B, 1997, 40(2/3): 223-230. |
22 | HAYASHI A, MASUZAWA N, YUBUCHI S, et al. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature[J]. Nat. Commun., 2019, 10(1): doi: 10.1038/s41467-019-13178-2. |
23 | GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Adv. Mater., 2018, 30(17): doi: 10.1002/adma.201705702. |
24 | HE T, CAO H, CHEN P. Complex hydrides for energy storage, conversion, and utilization[J]. Adv. Mater., 2019, 31(50): doi: 10.1002/adma.201902757. |
25 | 郑浩, 高健, 王少飞, 等. 锂电池基础科学问题(VI)—离子在固体中的输运[J]. 储能科学与技术, 2013, 2(6): 620-635. |
ZHENG H, GAO J, WANG S F, et al. Fundamental scientific aspects of lithium batteries (VI)—Ionic transport in solids[J]. Energy Storage Science and Technology, 2013, 2(6): 620-635. | |
26 | BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chem. Rev., 2016, 116(1): 140-162. |
27 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nat. Mater., 2019, 18(12): 1278-1791. |
28 | YUNG-FANG Y Y, KUMMER J T. Ion exchange properties of and rates of ionic diffusion in beta-alumina[J]. J. Inorg, Nucl. Chem., 1967, 29: 2453-2475. |
29 | LU X, XIA G, LEMMON J P, et al. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives[J]. J. Power Sources, 2010, 195(9): 2431-2442. |
30 | LEE S T, LEE D H, LEE S M, et al. Effects of calcium impurity on phase relationship, ionic conductivity and microstructure of Na+-β/β″-alumina solid electrolyte[J]. Bull. Mater. Sci., 2016, 39(3): 729-735. |
31 | BATES J B, ENGSTROM H, WANG J C, et al. Composition, ion-ion correlations and conductivity of beta″-alumina[J]. Solid State Ionics, 1981, 5: 159-162. |
32 | HOOPER A. A study of the electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis[J]. J. Phys. D, 1977, 10: 1487-1496. |
33 | YANG Z, ZHANG J, KINTNER-MEYER M C, et al. Electrochemical energy storage for green grid[J]. Chem. Rev., 2011, 111(5): 3577-3613. |
34 | YAMAGUCHI S, TERABE K, IGUCHI Y. Formation and crystallization of beta-alumina from precursor prepared by sol-gel method using metal alkoxides[J]. Solid State Ionics, 1987, 25(2/3): 171-176. |
35 | MALI A, PETRIC A. Synthesis of sodium β″-alumina powder by sol-gel combustion[J]. J. Eur. Ceram. Soc., 2012, 32(6): 1229-1234. |
36 | BARISON S, FASOLIN S, MORTALÒ C, et al. Effect of precursors on β-alumina electrolyte preparation[J]. J. Eur. Ceram. Soc., 2015, 35(7): 2099-2107. |
37 | VIRKAR A V, GORDON R S. Fracture properties of polycrystalline lithia-stabilized β"- alumina[J]. J. Am. Ceram. Soc., 1977, 60: 58-61. |
38 | BOILOT J P, THÉRY J. Influence de l'addition d'ions etrangers sur la stabilite relative et la conductivite electrique des phases de type alumine β et β″[J]. Mat. Res. Bull., 1976, 11(4): 407-413. |
39 | ZHU C, XUE J. Structure and properties relationships of beta-Al2O3 electrolyte materials[J]. J. Alloys Compd., 2012, 517: 182-185. |
40 | CHEN G, LU J, ZHOU X, et al. Solid-state synthesis of high performance Na-β″-Al2O3 solid electrolyte doped with MgO[J]. Ceram. Int., 2016, 42(14): 16055-16062. |
41 | VISWANATHAN L, IKUMA Y, VIRKAR A V. Transfomation toughening of β″-alumina by incorporation of zirconia[J]. J. Mater. Sci., 1983, 18(1): 109-113. |
42 | GREEN D J. Transformation toughening and grain size control in β″-Al2O3/ZrO2 composites[J]. J. Mater. Sci., 1985, 20(7): 2639-2646. |
43 | SHAN S J, YANG L P, LIU X M, et al. Preparation and characterization of TiO2 doped and MgO stabilized Na-β″-Al2O3 electrolyte via a citrate sol-gel method[J]. J. Alloys Compd., 2013, 563: 176-179. |
44 | CHEN G, LU J, LI L, et al. Microstructure control and properties of β″-Al2O3 solid electrolyte[J]. J. Alloys Compd., 2016, 673: 295-301. |
45 | XU D, JIANG H, LI Y, et al. The mechanical and electrical properties of Nb2O5 doped Na-β"-Al2O3 solid electrolyte[J]. Eur. Phys. J. Appl. Phys., 2016, 74(1): doi: 10.1051/epjap/2016150466. |
46 | YANG L P, SHAN S J, WEI X L, et al. The mechanical and electrical properties of ZrO2-TiO2-Na-β/β″-alumina composite electrolyte synthesized via a citrate sol-gel method[J]. Ceram. Int., 2014, 40(7): 9055-9060. |
47 | ZHU C, HONG Y, HUANG P. Synthesis and characterization of NiO doped beta-Al2O3 solid electrolyte[J]. J. Alloys Compd., 2016, 688: 746-751. |
48 | XU D, JIANG H, LI M, et al. Synthesis and characterization of Y2O3 doped Na-β″-Al2O3 solid electrolyte by double zeta process[J]. Ceram. Int., 2015, 41(4): 5355-5361. |
49 | ERKALFA H, MISIRLI Z, BAYKARA T. The effect of TiO2 and MnO2 on densification and microstructural development of alumina[J]. Ceram. Int., 1998, 24: 81-90. |
50 | LU X, LI G, KIM J Y, et al. Enhanced sintering of β″-Al2O3/YSZ with the sintering aids of TiO2 and MnO2[J]. J. Power Sources, 2015, 295: 167-174. |
51 | MAY G J. The influence of barium and titanium dopants on the ionic conductivity and phase composition of sodium-beta-alumina[J]. J. Mater. Sci., 1979, 14(6): 1502-1505. |
52 | SAMIEE M, RADHAKRISHNAN B, RICE Z, et al. Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases[J]. J. Power Sources, 2017, 347: 229-237. |
53 | MA Q, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chem. Mater., 2016, 28(13): 4821-4828. |
54 | SONG S, DUONG H M, KORSUNSKY A M, et al. A Na+ superionic conductor for room-temperature sodium batteries[J]. Sci. Rep., 2016, 6: doi: 10.1038/srep32330. |
55 | BOGUSZ W, KROK F, JAKUBOWSKI W. Influence of doping on some physical properties of NASICON[J]. Solid State Ionics, 1983, 9/10: 803-807. |
56 | KROK F, KONY D, DYGAS J R, et al. On some properties of NASICON doped with MgO and CoO[J]. Solid State Ionics, 1989, 36: 251-254. |
57 | RUAN Y, SONG S, LIU J, et al. Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions[J]. Ceram. Int., 2017, 43(10): 7810-7815. |
58 | ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Adv. Energy Mater., 2017, 7(4): doi: 10.1002/aenm.201601196. |
59 | NOI K, SUZUKI K, TANIBATA N, et al. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive[J]. J. Am. Ceram. Soc., 2018, 101(3): 1255-1265. |
60 | SHAO Y, ZHONG G, LU Y, et al. A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity[J]. Energy Stor. Mater., 2019, 23: 514-521. |
61 | SUZUKI K, NOI K, HAYASHI A, et al. Low temperature sintering of Na1+xZr2SixP3-xO12 by the addition of Na3BO3[J]. Scr. Mater., 2018, 145: 67-70. |
62 | WANG H, OKUBO K, INADA M, et al. Low temperature-densified NASICON-based ceramics promoted by Na2O-Nb2O5-P2O5 glass additive and spark plasma sintering[J]. Solid State Ionics, 2018, 322: 54-60. |
63 | LENG H, NIE J, LUO J. Combining cold sintering and Bi2O3-activated liquid-phase sintering to fabricate high-conductivity Mg-doped NASICON at reduced temperatures[J]. J. Materiomics, 2019, 5(2): 237-246. |
64 | OH J A S, HE L, PLEWA A, et al. Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: Effect of liquid phase sintering[J]. ACS Appl. Mater. Interfaces, 2019, 11(43): 40125-40133. |
65 | CAO X G, ZHANG X H, TAO T, et al. Effects of antimony tin oxide (ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes[J]. Ceram. Int., 2020, 46(6): 8405-8412. |
66 | LU Y, ALONSO J A, YI Q, et al. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte[J]. Adv. Energy Mater., 2019, 9(28): doi: 10.1002/aenm.201901205. |
67 | IHLEFELD J F, GURNIAK E, JONES B H, et al. Scaling effects in sodium zirconium silicate phosphate (Na1+xZr2SixP3-xO12) ion-conducting thin films[J]. J. Am. Ceram. Soc., 2016, 99(8): 2729-2736. |
68 | BELL N S, EDNEY C, WHEELER J S, et al. The influences of excess sodium on low-temperature NASICON synthesis[J]. J. Am. Ceram. Soc., 2014, 97(12): 3744-3748. |
69 | PERTHUIS H, COLOMBAN P. Sol-gel routes leading to nasicon ceramics[J]. Ceram. Int., 1986, 12: 39-52. |
70 | LEE J S, CHANG C M, LEE Y I, et al. Spark plasma sintering (SPS) of NASICON ceramics[J]. J. Am. Ceram. Soc., 2004, 87(2): 305-307. |
71 | GUIN M, TIETZ F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries[J]. J. Power Sources, 2015, 273: 1056-1064. |
72 | TAKAHASHI T, KUWABARA K, SHIBATA M. Solid-state ionics-conductivities of Na+ ion conductors based on NASICON[J]. Solid State Ionics, 1980, 1(3/4): 163-175. |
73 | ALPEN U V. Compositional dependence of the electrochemical and structural parameters in the NASICON system (Na1+xSixZr2P3-xO12)[J]. Solid State Ionics, 1981, 3/4: 215-218. |
74 | VOGEL E M, CAVA R J, RIETMAN E. Na+ ion conductivity and crystallographic cell characterization in the Hf-NASICON system Na1+xHf2SixP3-xO12[J]. Solid State Ionics, 1984, 14(1): 1-6. |
75 | WANG W J, ZHANG Z B,OU X Y, et al. Properties and phase relationship of the Na1+xHf2-yTiySixP3-xO12 system[J]. Solid State Ionics, 1988, 28/29/30: 442-445. |
76 | WANG W, LI D, ZHAO J. Solid phase synthesis and characterization of Na3Zr2-yNb0.8ySi2PO12 system[J]. Solid State lonics, 1992, 51(1/2): 97-100. |
77 | MOUAHID F E, BETTACH M, ZAHIR M, et al. Crystal chemistry and ion conductivity of the Na1+xTi2-xAlx(PO4)3 (0≤x≤0.9) NASICON series[J]. J. Mater. Chem., 2000, 10(12): 2748-2757. |
78 | KHAKPOUR Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+xZr2-xMxSi2PO12 solid NASICON electrolytes on sintering, micros-tructure and conductivity[J]. Electrochim. Acta, 2016, 196: 337-347. |
79 | TANIBATA N, NOI K, HAYASHI A, et al. X-ray crystal structure analysis of sodium-ion conductivity in 94Na3PS4⋅6Na4SiS4 glass-ceramic electrolytes[J]. Chem. Electro. Chem., 2014, 1(7): 1130-1132. |
80 | HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nat. Commun., 2012, 3: doi: 10.1038/ncomms1843. |
81 | HAYASHI A, NOI K, TANIBATA N, et al. High sodium ion conductivity of glass-ceramic electrolytes with cubic Na3PS4[J]. J. Power Sources, 2014, 258: 420-423. |
82 | TANIBATA N, NOI K, HAYASHI A, et al. Preparation and characterization of highly sodium ion conducting Na3PS4-Na4SiS4 solid electrolytes[J]. RSC Adv., 2014, 4(33): 17120-17123. |
83 | ZHU Z, CHU I H, DENG Z, et al. Role of Na+ interstitials and dopants in enhancing the Na+ conductivity of the cubic Na3PS4 superionic conductor[J]. Chem. Mater., 2015, 27(24): 8318-8325. |
84 | RAO R P, CHEN H, WONG L L, et al. Na3+xMxP1-xS4 (M=Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2-δ(SO4)3|Na3+xMxP1-xS4|Na2Ti3O7[J]. J. Mater. Chem. A, 2017, 5(7): 3377-3388. |
85 | DE KLERK N J J, WAGEMAKER M. Diffusion mechanism of the sodium-ion solid electrolyte Na3PS4 and potential improvements of halogen doping[J]. Chem. Mater., 2016, 28(9): 3122-3130. |
86 | CHU I H, KOMPELLA C S, NGUYEN H, et al. Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor[J]. Sci. Rep., 2016, 6: doi: 10.1038/srep33733. |
87 | BO S, WANG Y, KIM J C, et al. Computational and experimental investigations of Na-in conduction in cubic Na3PSe4[J]. Chem. Mater., 2015, 28(1): 252-258. |
88 | ZHANG L, YANG K, MI J, et al. Na3PSe4: A novel chalcogenide solid electrolyte with high ionic conductivity[J]. Adv. Energy Mater., 2015, 5(24): doi: 10.1002/aenm.201501294. |
89 | ZHANG L, ZHANG D, YANG K, et al. Vacancy-contained tetragonal Na3SbS4 superionic conductor[J]. Adv. Sci., 2016, 3(10): doi: 10.1002/advs.201600089. |
90 | WANG N, YANG K, ZHANG L, et al. Improvement in ion transport in Na3PSe4-Na3SbSe4 by Sb substitution[J]. J. Mater. Sci., 2017, 53(3): 1987-1994. |
91 | WANG H, CHEN Y, HOOD Z D, et al. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure[J]. Angew. Chem. Int. Ed. Engl., 2016, 55(30): 8551-8555. |
92 | HEO J W, BANERJEE A, PARK K H, et al. New Na-ion solid electrolytes Na4-xSn1-xSbxS4 (0.02≤x≤0.33) for all-solid-state na-ion batteries[J]. Adv. Energy Mater., 2018, 8(11): doi: 10.1002/aenm.201702716. |
93 | SHANG S L, YU Z, WANG Y, et al. Origin of outstanding phase and moisture stability in a Na3P1-xAsxS4 superionic conductor[J]. ACS Appl. Mater. Interfaces, 2017, 9(19): 16261-16269. |
94 | YU Z, SHANG S L, SEO J H, et al. Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with Improved moisture stability for solid-state sodium-ion batteries[J]. Adv. Mater., 2017, 29(16): doi: 10.1002/adma.201605561. |
95 | YUE J, HAN F, FAN X, et al. High-performance all-inorganic solid-state sodium-sulfur battery[J]. ACS Nano, 2017, 11(5): 4885-4891. |
96 | KANDAGAL V S, BHARADWAJ M D, WAGHMARE U V. Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12[J]. J. Mater. Chem. A, 2015, 3(24): 12992-12999. |
97 | RICHARDS W D, TSUJIMURA T, MIARA L J, et al. Design and synthesis of the superionic conductor Na10SnP2S12[J]. Nat. Commun., 2016, 7: doi: 10.1038/ncomms11009. |
98 | WANG Y, RICHARDS W D, BO S H, et al. Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11 (X=O, S, Se)[J]. Chem. Mater., 2017, 29(17): 7475-7482. |
99 | ZHANG Z, RAMOS E, LALÈRE F, et al. Na11Sn2PS12: A new solid state sodium superionic conductor[J]. Energy Environ. Sci., 2018, 11(1): 87-93. |
100 | DUCHARDT M, RUSCHEWITZ U, ADAMS S, et al. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12[J]. Angew. Chem., 2018, 130: 1365-1369. |
101 | RAMOS E P, ZHANG Z, ASSOUD A, et al. Correlating ion mobility and single crystal structure in sodium-ion chalcogenide-based solid state fast ion conductors: Na11Sn2PnS12 (Pn=Sb, P)[J]. Chem. Mater., 2018, 30(21): 7413-7417. |
102 | YU Z, SHANG S L, GAO Y, et al. A quaternary sodium superionic conductor-Na10.8Sn1.9PS11.8[J]. Nano Energy, 2018, 47: 325-330. |
103 | YU Z, SHANG S L, WANG D, et al. Synthesis and understanding of Na11Sn2PSe12 with enhanced ionic conductivity for all-solid-state Na-ion battery[J]. Energy Stor. Mater., 2019, 17: 70-77. |
104 | WAN H, CAI L, WENG W, et al. Cobalt-doped pyrite for Na11Sn2SbS11.5Se0.5 electrolyte based all-solid-state sodium battery with enhanced capacity[J]. J. Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227515. |
105 | OGUCHI H, MATSUO M, KUROMOTO S, et al. Sodium-ion conduction in complex hydrides NaAlH4 and Na3AlH6[J]. J. Appl. Phy., 2012, 111(3): doi: 10.1063/1.3681362. |
106 | MATSUO M, OGUCHI H, SATO T, et al. Sodium and magnesium ionic conduction in complex hydrides[J]. J. Alloys Compd., 2013, 580: S98-S101. |
107 | UDOVIC T J, MATSUO M, UNEMOTO A, et al. Sodium superionic conduction in Na2B12H12[J]. Chem. Commun., 2014, 50: 3750-3752. |
108 | TANG W S, UNEMOTO A, ZHOU W, et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions[J]. Energy Environ. Sci., 2015, 8(12): 3637-3645. |
109 | TANG W S, MATSUO M, WU H, et al. Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature[J]. Adv. Energy Mater., 2016, 6: doi: 10.1002/aenm.201502237. |
110 | SADIKIN Y, SCHOUWINK P, BRIGHI M, et al. Modified anion packing of Na2B12H12 in close to room temperature superionic conductors[J]. Inorg. Chem., 2017, 56(9): 5006-5016. |
111 | HANSEN B R S, PASKEVICIUS M, JØRGENSEN M, et al. Halogenated sodium-closo-dodecaboranes as solid-state ion conductors[J]. Chem. Mater., 2017, 29(8): 3423-3430. |
112 | TANG W S, MATSUO M, WU H, et al. Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures[J]. Energy Stor. Mater., 2016, 4: 79-83. |
113 | TANG W S, YOSHIDA K, SOLONININ A V, et al. Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts[J]. ACS Energy Letters, 2016, 1(4): 659-664. |
114 | DUCHENE L, KUHNEL R S, RENTSCH D, et al. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture[J]. Chem. Commun., 2017, 53(30): 4195-4198. |
115 | DUCHENE L, KUHNEL R S, STILP E, et al. A stable 3 V all-solid-state sodium-ion battery based on a closo-borate electrolyte[J]. Energy Environ. Sci., 2017, 10: 2609-2615. |
116 | PAYANDEH S, ASAKURA R, AVRAMIDOU P, et al. Nido-borate/closo-borate mixed-anion electrolytes for all-solid-state batteries[J]. Chem. Mater., 2020, 32(3): 1101-1110. |
117 | YU X, MANTHIRAM A. Sodium-sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte[J]. Matter, 2019, 1(2): 439-451. |
118 | NIU W, CHEN L, LIU Y, et al. All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase[J]. Chem. Eng. J., 2020, 384: doi: 10.1016/j.cej.2019.123233. |
119 | CHI X, HAO F, ZHANG J, et al. A high-energy quinone-based all-solid-state sodium metal battery[J]. Nano Energy, 2019, 62: 718-724. |
120 | HAO F, CHI X, LIANG Y, et al. Taming active material-solid electrolyte interfaces with organic cathode for all-solid-state batteries[J]. Joule, 2019, 3(5): 1349-1359. |
121 | TIAN Y, SUN Y, HANNAH D C, et al. Reactivity-guided interface design in Na metal solid-state batteries[J]. Joule, 2019, 3(4): 1037-1050. |
122 | XU X, LI Y, CHENG J, et al. Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal[J]. J. Energy Chem., 2020, 41: 73-78. |
123 | BANERJEE A, PARK K H, HEO J W, et al. Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries[J]. Angew. Chem. Int. Ed. Engl., 2016, 55(33): 9634-9638. |
124 | FAN X, YUE J, HAN F, et al. High-performance all-solid-state Na-S battery enabled by casting-annealing technology[J]. ACS Nano, 2018, 12(4): 3360-3368. |
125 | WAN H, MWIZERWA J P, QI X, et al. Core-shell Fe1-xS@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density[J]. ACS Nano, 2018, 12(3): 2809-2817. |
126 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nat. Rev. Mater., 2020, 5(3): 229-252. |
[1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[2] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[3] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
[4] | 吴洁, 江小标, 杨旸, 吴勇民, 朱蕾, 汤卫平. NASICON结构Li1+xAlxTi2-x(PO4)3(0≤x≤0.5)固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1472-1488. |
[5] | 杨菁, 刘高瞻, 沈麟, 姚霞银. NASICON结构钠离子固体电解质及固态钠电池应用研究进展[J]. 储能科学与技术, 2020, 9(5): 1284-1299. |
[6] | 彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
[7] | 贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1266-1283. |
[8] | 屈晨滢, 侯朝霞, 王晓慧, 王健, 王凯, 李思瑶. 凝胶聚合物电解质在固态超级电容器中的研究进展[J]. 储能科学与技术, 2020, 9(3): 776-783. |
[9] | 姜鹏峰, 石元盛, 李康万, 韩百川, 颜立全, 孙洋, 卢侠. 固态电解质锂镧锆氧(LLZO)的研究进展[J]. 储能科学与技术, 2020, 9(2): 523-537. |
[10] | 杨建锋, 李林艳, 吴振岳, 王开学. 无机固态锂离子电池电解质的研究进展[J]. 储能科学与技术, 2019, 8(5): 829-837. |
[11] | 段 惠1,2,殷雅侠1,2,郭玉国1,2,万立骏1,2. 固态金属锂电池最新进展评述[J]. 储能科学与技术, 2017, 6(5): 941-951. |
[12] | 刘丽露1,戚兴国1,邵元骏1,潘 都1,2,白 莹2,胡勇胜1,李 泓1,陈立泉1. 钠离子固体电解质材料研究进展[J]. 储能科学与技术, 2017, 6(5): 961-980. |
[13] | 石 凯,安德成,贺艳兵,李宝华,康飞宇. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6(3): 479-492. |
[14] | 杜奥冰,柴敬超,张建军,刘志宏,崔光磊. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 627-648. |
[15] | 吴剑芳,郭 新. 固态锂离子传导氧化物中的点缺陷[J]. 储能科学与技术, 2016, 5(5): 745-753. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||