储能科学与技术 ›› 2020, Vol. 9 ›› Issue (5): 1234-1250.doi: 10.19799/j.cnki.2095-4239.2020.0192
收稿日期:
2020-05-29
修回日期:
2020-07-15
出版日期:
2020-09-05
发布日期:
2020-09-08
通讯作者:
潘慧霖
E-mail:21937034@zju.edu.cn;panhuilin@zju.edu.cn
作者简介:
马梦莹(1996—),女,硕士研究生,研究方向为钠离子电池电解质,E-mail:基金资助:
Mengying MA1(), Huilin PAN1(), Yongsheng HU2,3
Received:
2020-05-29
Revised:
2020-07-15
Online:
2020-09-05
Published:
2020-09-08
Contact:
Huilin PAN
E-mail:21937034@zju.edu.cn;panhuilin@zju.edu.cn
摘要:
钠离子电池具有钠资源丰富、成本低等优势,是一种很有前景的储能电池体系。目前,国内外研究者们已开发出多种可行的钠离子电池正负极材料。钠离子电池电解质作为正负极材料参与氧化还原反应的媒介,其氧化还原窗口、钠离子的迁移和扩散、钠离子的溶剂化结构、钠离子与阴离子或溶剂之间的耦合关联作用等性质,是决定电极材料界面性质的关键因素。因而,钠离子电池电解质对钠离子电池体系的热力学和动力学性质具有重要的影响,如电极材料的结构稳定性、固态电解质膜(SEI)的组成和结构、电池的倍率性能、循环稳定性和热稳定性等。本文总结了有关非水系钠离子电池电解质的研究进展,包括液体电解液和固态电解质等,讨论了不同类型电解质的物理化学性质及其在钠离子电池中的应用。当前,钠离子电池液态和固态电解质仍存在电导率低、电化学窗口窄、SEI膜稳定性较差等问题。开发新型、低成本、高性能的钠离子电池电解质对钠离子电池的商业化应用至关重要。
中图分类号:
马梦莹, 潘慧霖, 胡勇胜. 非水系钠离子电池的电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1234-1250.
Mengying MA, Huilin PAN, Yongsheng HU. Progress in electrolyte research for non-aqueous sodium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1234-1250.
1 | BLOMGREN G E. The development and future of lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(1): A5019-A5025. |
2 | MEISTER P, JIA Haiping, LI Jie, et al. Best practice: Performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency[J]. Chemistry of Materials, 2016, 28(20): 7203-7217. |
3 | TARASCON J M. Is lithium the new gold?[J]. Nature Chemistry, 2010, 2(6): 510. |
4 | SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3: 267-278. |
5 | NAGELBERG A S, WORRELL W L. A thermodynamic study of sodium-intercalated TaS2 and TiS2[J]. Journal of Solid State Chemistry, 1979, 29: 345-354. |
6 | PARANT J P, OLAZCUAGA R, DEVALETTE M, et al. Sur quelques nouvelles phases de formule NaxMnO2 (x≤1)[J]. Journal of Solid State Chemistry, 1971, 3(1): 1-11. |
7 | WHITTINGHAM M S. Chemistry of intercalation compounds metal guests in chalcogenide hosts[J]. Progress in Solid State Chemistry, 1978, 12(1): 41-99. |
8 | NISHI Y. Lithium ion secondary batteries, past 10 years and the future[J]. Journal of Power Sources, 2001, 100(1/2): 101-106. |
9 | NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. |
10 | KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2015, 54(11): 3431-3448. |
11 | MENDIBOURE A, DELMAS C, HAGENMULLER P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes[J]. Journal of Solid State Chemistry, 1985, 57(3): 323-331. |
12 | JIAN Zelang, ZHAO Liang, PAN Huili, et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochemistry Communications, 2012, 14: 86-89. |
13 | LU Yuhao, WANG Long, CHENG Jinguang, et al. Prussian blue: A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52): 6544-6546. |
14 | STEVENSA D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271-1273. |
15 | PONROUCH A, MONTI D, BOSCHIN A, et al. Non-aqueous electrolytes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 17(3): 22-42. |
16 | PONROUCH A, MARCHANTE E, COURTY M, et al. In search of an optimized electrolyte for Na-ion batteries[J]. Energy & Environmental Science, 2012, 5(9): 8572-8583. |
17 | SHAKOURIAN-FARD M, KAMATH G, SMITH K, et al. Trends in Na-ion solvation with alkyl-carbonate electrolytes for sodium-ion batteries: Insights from first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(40): 22747-22759. |
18 | ESHETU G G, GRUGEON S, KIM Huikyong, et al. Comprehensive insights into the reactivity of electrolytes based on sodium ions[J]. ChemSusChem, 2016, 9(5): 462-471. |
19 | PONROUCH A, DEDRYVÈRE R, MONTI D, et al. Towards high energy density sodium ion batteries through electrolyte optimization[J]. Energy & Environmental Science, 2013, 6(8): 2361-2369 |
20 | LI Yuqi, YANG Yang, LU Yaxiang, et al. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Letters, 2020, 5(4): 1156-1158. |
21 | LI Yuqi, LU Yaxiang, CHEN Liquan, et al. Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries[J]. Chinese Physics B, 2020, 29(4): doi: 10. 1088/1674-1056/ab7906. |
22 | KUMAR H, DETSI E, ABRAHAM D P. Fundamental mechanisms of solvent decomposition involved in solid-electrolyte interphase formation in sodium ion batteries[J]. Chemistry of Materials, 2016, 28: 8930-8941. |
23 | PAN Kanghua, LU Haiyan, ZHONG Faping, et al. Understanding the electrochemical compatibility and reaction mechanism on Na metal and hard carbon anodes of PC-based electrolytes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39651-39660. |
24 | KOMABA S, ISHIKAWA T, YABUUCHI N, et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4165-4168. |
25 | MOGENSEN R, BRANDELL D, YOUNESI R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batterie[J]. ACS Energy Letters, 2016, 1: 1173-1178. |
26 | BOUIBES A, TAKENAKA N, FUJIE T, et al. Concentration effect of fluoroethylene carbonate on the formation of solid electrolyte interphase layer in sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28525-28532. |
27 | WIETHELMANN U, LISCHKA U, WEGNER M. Lithium bisoxalatoborate used as conducting salt in lithium ion batteries: DE 19829030C1[P]. 1999-06-07. |
28 | CHEN Xilin, XU Wu, ENGELHARD M H, et al. Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperaturess[J]. Journal of Materials Chemistry A, 2014, 2(7): 2346-2352. |
29 | XIANG Hongfa, SHI Pengcheng, BHATTACHARYA P, et al. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato) borate dual-salt electrolytes[J]. Journal of Power Sources, 2016, 318: 170-177. |
30 | GE Chunhua, WANG Lixia, XUE Lili, et al. Synthesis of novel organic-ligand-doped sodium bis(oxalate)-borate complexes with tailored thermal stability and enhanced ion conductivity for sodium ion batteries[J]. Journal of Power Sources, 2014, 248: 77-82. |
31 | NOBUHARA K, NAKAYAMA H, NOSE M, et al. First-principles study of alkali metal-graphite intercalation[J]. Journal of Power Sources, 2013, 243: 585-587. |
32 | JACHE B, ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition, 2014, 53(38): 10169-10173. |
33 | KIM Haegyeom, HONG Jihyun, PARK Young-Uk, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials, 2015, 25(4): 534-541. |
34 | KARIMI N, VARZI A, PASSERINI S A. comprehensive insight into the volumetric response of graphite electrodes upon sodium co-intercalation in ether-based electrolytes[J]. Electrochimica Acta, 2019, 304: 474-486. |
35 | Zhi Wei SEH, SUN Jie, SUN Yongming, et al. A highly reversible roomtemperature sodium metal anode[J]. ACS Central Science, 2015, 1(8): 449-455. |
36 | GOKTAS M, BOLLI C, BUCHHEIM J, et al. Stable and unstable diglyme-based electrolytes for batteries with sodium or graphite as electrode[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 32844-32855. |
37 | LI Kaikai, ZHANG Jun, LIN Dongmei, et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes[J]. Nature Communications, 2019, 10(1): 725-736. |
38 | MATSUMOTO K, HOSOKAWA T, NOHIRA T, et al. The Na[FSA]-[C2C1im][FSA] (C2C1im+: 1-ethyl-3-methylimidazolium and FSA: Bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries[J]. Journal of Power Sources, 2014, 265: 36-39. |
39 | MONTI D, JÓNSSON E, PALACíN M R, et al. Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity[J]. Journal of Power Sources, 2014, 245: 630-636. |
40 | HAGIWARA R, MATSUMOTO K, HWANG Jinkwang, et al. Sodium ion batteries using ionic liquids as electrolytes[J]. The Chemical Record, 2018, 19(4): 758-770. |
41 | CHAGAS L G, BUCHHOLZ D, WU Liming, et al. Unexpected performance of layered sodium-ion cathode material in ionic liquid-based electrolyte[J]. Journal of Power Sources, 2014, 247: 377-383. |
42 | BRUTTI S, NAVARRA M A, MARESCA G, et al. Ionic liquid electrolytes for room temperature sodium battery systems[J]. Electrochimica Acta, 2019, 306: 317-326. |
43 | DING Changsheng, NOHIRA T, HAGIWARA R, et al. Na[FSA]-[C3C1pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature[J]. Journal of Power Sources, 2014, 269: 124-128. |
44 | YAMAMOTO T, MITSUHASHI K, MATSUMOTO K, et al. Probing the mechanism of improved performance for sodium-ion batteries by utilizing three-electrode cells: effects of sodium-ion concentration in ionic liquid electrolytes[J]. Electrochemistry, 2019, 87(3): 175-181. |
45 | SUN Hao, ZHU Guanzhou, XU Xintong, et al. A safe and nonflammable sodium metal battery based on an ionic liquid electrolyte[J]. Nnature Communications, 2019, 10(1): 3302-3313. |
46 | BALAKRISHNAN P G, RAMESH R, PREM KUMAR T. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414. |
47 | FENG Jinkui, AN Yongling, Lijie CI, et al. Nonflammable electrolyte for safer non-aqueous sodium batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 14539-14544. |
48 | FENG Jinkui, ZHANG Zhen, LI Lifei, et al. Ether-based nonflammable electrolyte for room temperature sodium battery[J]. Journal of Power Sources, 2015, 284: 222-226. |
49 | SHIM Eungi, Taeheum NAM, KIM Junggu, et al. Effect of the concentration of diphenyloctyl phosphate as a flame-retarding additive on the electrochemical performance of lithium-ion batteries[J]. Electrochimica Acta, 2009, 54: 2276-2283. |
50 | NAKAGAWA H, OCHIDA M, DOMI Y, et al. Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester[J]. Journal of Power Sources, 2012, 212: 148-153. |
51 | JIANG X, ZENG Z, XIAO L, et al. An all-phosphate and zero-strain sodium-ion battery based on Na3V2(PO4)3 cathode, NaTi2(PO4)3 anode, and trimethyl phosphate electrolyte with intrinsic safety and long lifespan[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43733-43738. |
52 | XU Kang, ZHANG Shengshui, ALLEN J L, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries (Ⅱ): Performance in cell[J]. Electrochemical Society, 2003, 150(2): A170-A175. |
53 | YAMADA Y, WANG Jianhui, Seongjae KO, et al. Advances and issues in developing saltconcentrated battery electrolytes[J]. Nature Energy, 2019, 4: 427-439. |
54 | WANG Jianhui, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3: 22-29. |
55 | JIANG Xiaoyu, LIU Xingwei, ZENG Ziqi, et al. A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life[J]. Advanced Energy Materials, 2018, 8: 1802176-1802185. |
56 | LIU Xingwei, JIANG Xiaoyu, ZENG Ziqi, et al. High capacity and cycle-stable hard carbon anode for non-flammable sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38141-38150. |
57 | ZENG Ziqi, JIANG Xiaoyu, LI Ran, et al. A safer sodium-ion battery based on nonflammable organic phosphate electrolyte[J]. Advanced Science, 2016, 3(9): 1600066-1600074. |
58 | JIANG Xiaoyu, LIU Xingwei, ZENG Ziqi, et al. A bifunctional fluorophosphate electrolyte for safer sodium-ion batteries[J]. iScience, 2018, 10: 114-122. |
59 | TAKADA K, YAMADA Y, YAMADA A. Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35770-35776. |
60 | ZHENG Jianming, CHEN Shuru, ZHAO Wengao, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes[J]. ACS Energy Letters, 2018, 3(2): 315-321. |
61 | FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589-589. |
62 | ARMAND M B, CHABAGNO J M, M. D. Second international meeting on solid electrolytes[C]//University of St. Andrews, Scotland, September20-22, 1978. |
63 | WEST K, ZACHAU-CHRISTIANSEN B, JACOBSEN T, et al. Poly(ethylene oxide)-sodium perchlorate electrolytes in solid-state sodium cells[J]. British Polymer Journal, 1988, 20(3): 243-246. |
64 | BOSCHIN A, JOHANSSON P. Characterization of NaX (X: TFSI, FSI)-PEO based solid polymer electrolytes for sodium batteries[J]. Electrochimica Acta, 2015, 175: 124-133. |
65 | QI Xingguo, MA Qiang, LIU Lilu, et al. Sodium bis(fluorosulfonyl)imide-poly(ethylene oxide) polymer electrolytes for sodium ion battereis[J]. ChemElectroChem, 2016, 3(11): 1741-1745. |
66 | MA Qiang, LIU Juanjuan, QI Xingguo, et al. A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries[J]. Journal of Materials Chemistry A, 2017, 5: 7738-7743. |
67 | LIU Lilu, QI Xingguo, YIN Shijun, et al. In situ formation of a stable interface in solid-state batteries[J]. ACS Energy Letters, 2019, 4: 1650-1657. |
68 | VILLALUENGA I, BOGLE X, GREENBAUM S, et al. Cation only conduction in new polymer-SiO2 nanohybrids: Na+ electrolytes[J]. Journal of Materials Chemistry A, 2013, 1(29): 8348-8352. |
69 | CROCE F, APPETECCHI G B, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394: 456-458. |
70 | NI'MAH Y L, CHENG Mingyao, CHENG Juhsiang, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278: 375-381. |
71 | ZHANG Zhizhen, XU Kaiqi, RONG Xiaohui, et al. Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries[J]. Journal of Power Sources, 2017, 372: 270-275. |
72 | XIAO Zhuliu, ZHOU Binghua, WANG Jirong, et al. PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries[J]. Journal of Membrane Science, 2019, 576: 182-189. |
73 | ISA K B, ALI N M, OTHMAN L, et al. Ionic conductivity and dielectric properties of the PAN-ion conducting polymers[J]. AIP Conference Proceedings, 2008, 1017: 264-269. |
74 | ABDULLAH O G, AZIZ S B, SABER D R, et al. Characterization of polyvinyl alcohol film doped with sodium molybdate as solid polymer electrolytes[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(12): 8928-8936. |
75 | HALLINAN JR D T, BALSARA N P. Polymer electrolytes[J]. Annual Review of Materials Research, 2013, 43: 503-525. |
76 | HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182. |
77 | GOODENOUGH J B, HONG H Y P, PKAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. |
78 | ZHANG Zhizhen, ZOU Zheyi, KAUP K, et al. Correlated migration invokes higher Na+-ion conductivity in NaSICON-type solid electrolytes[J]. Advanced Energy Materials, 2019, 42(9): 1902373-1902387. |
79 | KHAKPOUR Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+xZr2-xMxSi2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity[J]. Electrochimica Acta, 2016, 196: 337-347. |
80 | MA Qianli, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chemistry of Materials, 2016, 28(13): 4821-4828. |
81 | ZHANG Zhizhen, ZHANG Qinghua, SHI Jinan, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7(4): 1601196-1601207. |
82 | KIM J K, LIM Y J, KIM H J, et al. A hybrid solid electrolyte for flexible solid-state sodium batteries[J]. Energy & Environmental Science, 2015, 8(12): 3589-3596. |
83 | ZHOU W D, LI Y T, XIN S, et al. Rechargeable sodium all-solid-state battery[J]. ACS Central Science, 2017, 3: 52-57. |
84 | CHEN Shaojie, XIE Dongjiu, LIU Gaozhan, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74. |
85 | HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nature Communications, 2012, 3: 856-862. |
86 | HAYASHI A, NOI K, TANIBATA N, et al. High sodium ion conductivity of glasseceramic electrolytes with cubic Na3PS4[J]. Journal of Power Sources, 2014, 258: 420-423. |
87 | YUBUCHI S, HAYASHI A, TATSUMISAGO M. Sodium-ion conducting Na3PS4 electrolyte synthesized via a liquid-phase process using N-methylformamide[J]. Chemistry Letters, 2015, 44: 884-886. |
88 | UEMATSU M, YUBUCHI S, NOI K, et al. Preparation of Na3PS4 electrolyte by liquid-phase process using ether[J]. Solid State Ionics, 2018, 320: 33-37. |
89 | XU Jieru, LIU Lilu, YAO Nan, et al. Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries[J]. Materials Today Nano, 2019, 8: 100048-100085. |
90 | WAN Hongli, MWIZERWA J P, QI Xingguo, et al. Nanoscaled Na3PS4 solid electrolyte for all-solid-state FeS2/Na batteries with ultrahigh initial coulombic efficiency of 95% and excellent cyclic performances[J]. ACS Applied Materials &Interfaces, 2018, 10(15): 12300-12304. |
91 | YU Z X, SHANG S L, SEO J H, et al. Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries[J]. Advanced Materials, 2017, 29(16): 1605561-1605568. |
92 | XU Xiaoyan, LI Yuanyuan, CHENG Jun, et al. Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal[J]. Journal of Energy Chemistry, 2020, 41: 73-78. |
93 | HU Pu, ZHANG Ye, CHI Xiaowei, et al. Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer[J]. ACS Applied Materials &Interfaces, 2019, 11(10): 9672-9678. |
94 | DUCHARDT M, RUSCHEWITZ U, ADAMS S, et al. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12[J]. Angewandte Chemie International Edition, 2018, 130: 1-6. |
95 | ZHANG Z, RAMOS E, LALÈRE F, et al. Na11Sn2PS12: A new solid state sodium superionic conductor[J]. Energy & Environmental Science, 2018, 11: 87-93. |
96 | LIU Jiapeng, LU Ziheng, EFFAT M B, et al. A theoretical study on the stability and ionic conductivity of the Na11M2PS12 (M=Sn, Ge) superionic conductors[J]. Journal of Power Sources, 2019, 409: 94-101. |
97 | SUN Yulong, WANG Yuechao, LIANG Xinmiao, et al. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4[J]. Journal of the American Chemistry Society, 2019, 141(14): 5640-5644. |
98 | ZHANG Zhizhen, ROY P N, LI Hui, et al. Coupled cation-anion dynamics enhances cation mobility in room-temperature superionic solid-state electrolytes[J]. Journal of the American Chemistry Society, 2019, 141(49): 19360-19372. |
[1] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[2] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[3] | 佟永丽, 武祥. 金属有机框架衍生的Co3O4 电极材料及其电化学性能[J]. 储能科学与技术, 2022, 11(3): 1035-1043. |
[4] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
[5] | 苏少鹏, 李进, 张佃平, 李严, 席文, 李杨. 红柳基锂电池负极材料的制备及电化学性能[J]. 储能科学与技术, 2021, 10(6): 2082-2089. |
[6] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[7] | 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937. |
[8] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[9] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[10] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
[11] | 杨春燕, 马云龙, 冯小琼, 张世英, 安长胜, 李劲风. 碳基材料在铝离子电池中的研究进展[J]. 储能科学与技术, 2021, 10(2): 432-439. |
[12] | 王瑨, 王建全, 阮殿波, 谢皎, 杨斌. 硅/活性炭复合材料的制备及其电化学性能[J]. 储能科学与技术, 2021, 10(1): 104-110. |
[13] | 李茜, 郁亚娟, 张之琦, 王磊, 黄凯. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86. |
[14] | 翟亭亭, 韩忠刚, 袁泽明, 张羊换. 球磨时间对TiFe系合金微观结构和电化学性能的影响[J]. 储能科学与技术, 2021, 10(1): 163-169. |
[15] | 王继贤, 彭思侃, 南文争, 陈翔, 王晨, 燕绍九, 戴圣龙. 喷雾干燥法制备石墨烯包覆富锂锰基材料Li1.22Mn0.52Ni0.26O2及其电化学性质[J]. 储能科学与技术, 2021, 10(1): 111-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||