储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 111-117.doi: 10.19799/j.cnki.2095-4239.2020.0236

• 储能材料与器件 • 上一篇    下一篇

喷雾干燥法制备石墨烯包覆富锂锰基材料Li1.22Mn0.52Ni0.26O2及其电化学性质

王继贤1,2(), 彭思侃1,2, 南文争1,2, 陈翔1,2, 王晨1,2, 燕绍九1,2(), 戴圣龙1,2   

  1. 1.中国航发北京航空材料研究院
    2.北京石墨烯技术研究院有限公司,北京 100095
  • 收稿日期:2020-07-03 修回日期:2020-07-17 出版日期:2021-01-05 发布日期:2021-01-08
  • 通讯作者: 燕绍九 E-mail:wangjixian520@163.com;shaojiuyan@126.com
  • 作者简介:王继贤(1986—),男,博士研究生,工程师,研究方向为锂离子电池电极材料,E-mail:wangjixian520@163.com

Preparation of graphene-coated Li1.22Mn0.52Ni0.26O2 using a spray drying method for lithium-ion batteries

Jixian WANG1,2(), Sikan PENG1,2, Wenzheng NAN1,2, Xiang CHEN1,2, Chen WANG1,2, Shaojiu YAN1,2(), Shenglong DAI1,2   

  1. 1.AECC Beijing Institute of Aeronautical Materials
    2.Beijing Institute of Graphene Technology Company Limited, Beijing 100095, China
  • Received:2020-07-03 Revised:2020-07-17 Online:2021-01-05 Published:2021-01-08
  • Contact: Shaojiu YAN E-mail:wangjixian520@163.com;shaojiuyan@126.com

摘要:

本工作采用喷雾干燥法制备了小片径石墨烯包覆的Li1.22Mn0.52Ni0.26O2富锂锰基材料(G-LNMO),系统研究了包覆前后材料的晶体结构、微观形貌及电化学性质。扫描电镜(SEM)及透射电镜(TEM)结果表明,该方法实现了石墨烯对富锂锰基材料(LNMO)的均匀包覆。充放电测试表明,石墨烯包覆后将LNMO材料在0.1 C和1 C倍率下的放电容量分别从199.8 mA·h/g和87.1 mA·h/g提升至220.2 mA·h/g和117.6 mA·h/g。在0.5 C倍率下经过100次循环后,G-LNMO材料的容量保持率为88%,相比于LNMO材料提升了17%。电池充放电曲线及电化学阻抗分析显示,石墨烯包覆能够显著提升电极动力学,降低电池在充放电过程中的极化,减缓电极/电解液界面副反应的发生,进而提升材料的循环稳定性和倍率性能。

关键词: 富锂锰基材料, 石墨烯, 表面包覆, 喷雾干燥, 电化学性能

Abstract:

A graphene-coated lithium rich manganese-based composite (G-LNMO) was synthesized using spray drying and was investigated as cathode material for lithium-ion batteries. The effect of graphene coating on the electrochemical performance was investigated systematically. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images revealed that in G-LNMO, graphene nanosheets are uniformly dispersed and particles of Li1.22Mn0.52Ni0.26O2 are coated with the graphene nanosheets. Charge-discharge curves and electrochemical impedance spectroscopy (EIS) indicate that the structure of particles coated by graphene nanosheets can enhance the electron migration and alleviate the polarization of a pristine sample, leading to improved cycling stability and a high-rate capability. At 0.1 C and 0.5 C, the pristine and graphene-coated samples delivered capacities of 199.8 and 220.2 mA·h/g, and after 100 cycles, retained a capacity of 71% and 88%, respectively. This simple and scalable approach can be applied to the industrial production of graphene coated and lithium rich manganese-based oxides.

Key words: lithium rich manganese-based oxide, grapheme, surface coating, spray drying, electrochemical performance

中图分类号: