1 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
|
2 |
HERFURTH H J. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
|
3 |
SUN Yang-Kook, MYUNG Seung-Taek, PARK Byung-Chun, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-326.
|
4 |
HUESO K B, ARMAND M, ROJO T. High temperature sodium batteries: status, challenges and future trends[J]. Energy & Environmental Science, 2013, 6(3): 734-749.
|
5 |
ZHANG Qingfeng, CHENG Xueli, WANG Chengxin, et al. Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries[J]. Energy & Environmental Science, 2021. DOI: 10.1039/D0EE03203D.
|
6 |
AURBACH D, LU Z, SCHECHTER A, et al. Prototype systems for rechargeable magnesium batteries[J]. Chemical Information, 2000, 407(6805): 724-727.
|
7 |
LI Qingfeng, BJERRUM N J. Aluminum as anode for energy storage and conversion: A review[J]. Journal of Power Sources, 2002, 110(1): 1-10.
|
8 |
WEI Jiang, CHEN Wei, CHEN Demin, et al. An amorphous carbon-graphite composite cathode for long cycle life rechargeable aluminum ion batteries[J]. Journal of Materials Science & Technology, 2018, 34(6): 983-989.
|
9 |
WANG Shutao, KRAVCHYK K V, KRUMEICH F, et al. Kish graphite flakes as a cathode material for an aluminum chloride-graphite battery[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 28478-28485.
|
10 |
WALTER M, KRAVCHYK K V, BOFER C, et al. Polypyrenes as high-performance cathode materials for aluminum batteries[J]. Advanced Materials, 2018, 30(15): 1705644.
|
11 |
DONG Xiaozhong, XU Hanyan, CHEN Hao, et al. Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery[J]. Carbon, 2019, 148: 134-140.
|
12 |
陈皓. 高性能铝-石墨烯电池材料研究[D]. 杭州: 浙江大学, 2017.CHEN Hao. Research on high performance aluminum-graphene battery materials [D]. Hangzhou: Zhejiang University, 2017.
|
13 |
JIAO Shuqiang, LEI Haiping, TU Jiguo, et al. An industrialized prototype of the rechargeable Al/AlCl3 - [EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene[J]. Carbon, 2016, 109: 276-281.
|
14 |
JAYAPRAKASH N, DAS S K, ARCHER L A. The rechargeable aluminum-ion battery[J]. Chemical Communications, 2011, 47(47): 12610-12612.
|
15 |
LIU S, HU J J, YAN N F, et al. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries[J]. Energy & Environmental Science, 2012, 5(12): 9743-9746.
|
16 |
张弘, 李镇江. 新型铝离子电池正极材料MoS2的制备及其电化学性能[J]. 青岛科技大学学报(自然科学版), 2018, 39(4): 47-52.ZHANG Hong, LI Zhenjiang. Preparation and electrochemical performance of MoS2, a new anode material for aluminum-ion batteries[J]. Journal of Qingdao University of Science and Technology (Natural Science), 2018, 39(4): 47-52.
|
17 |
LI Zhenjiang, GAO Chenghai, ZHANG Jinhui, et al. Mountain-like nanostructured 3D Ni3S2 on Ni foam for rechargeable aluminum battery and its theoretical analysis on charge/discharge mechanism[J]. Journal of Alloys and Compounds, 2019, 798: 500-506.
|
18 |
LI Caixia, DONG Shihua, TANG Rui, et al. Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries[J]. Energy & Environmental Science, 2018, 11(11): 3201-3211.
|
19 |
SUN Haobo, WANG Wei, YU Zhijing, et al. A new aluminium-ion battery with high voltage, high safety and low cost[J]. Chemical Communications, 2015, 51(59): 11892-11895.
|
20 |
LIN Mengchang, GONG Ming, LU Bingan, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015, 520(7547): 325-331.
|
21 |
WANG Diyan, WEI Chuanyu, LIN Mengchang, et al. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode[J]. Nature Communications, 2017, 8: 14283-14289.
|
22 |
WU Yingpeng, GONG Ming, LIN Mengchang, et al. 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-Ion battery[J]. Advanced Materials, 2016, 28(41): 9218-9222.
|
23 |
HU Haoyu, CAI Tonghui, BAI Peng, et al. Small graphite nanoflakes as an advanced cathode material for aluminum ion batteries[J]. Chemical Communications, 2020, 56(10): 1593-1596.
|
24 |
ZHANG Erjin, WANG Bin, WANG Jue, et al. Rapidly synthesizing interconnected carbon nanocage by microwave toward high-performance aluminum batteries[J]. Chemical Engineering Journal, 2020, 389: 124407.
|
25 |
WU Musheng, XU Bo, CHEN Liquan, et al. Geometry and fast diffusion of AlCl4- cluster intercalated in graphite[J]. Electrochimica Acta, 2016, 195: 158-165.
|
26 |
BHAURIYAL P, MAHATA A. The staging mechanism of AlCl4- intercalation in a graphite electrode for an aluminium-ion battery[J]. Physical Chemistry Chemical Physics, 2017, 19(11): 7980-7989.
|
27 |
JUNG Sung Chul, KANG Yong-Ju, YOO Dong-Joo, et al. Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery[J]. Journal of Physical Chemistry C, 2016, 120(25): 13384-13389.
|
28 |
RANI J V, KANAKAIAH V, DADMAL T, et al. Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery[J]. Journal of the Electrochemical Society, 2013, 160(10): 1781-1784.
|
29 |
XU J H, TUMEY D E, JADHAV A L, et al. Effects of graphite structure and ion transport on the electrochemical properties of pechargeable aluminum-graphite batteries[J]. ACS Applied Energy Materials, 2019, 2(11): 7799-7810.
|
30 |
FAN Changling, HE Huan, ZHANG Kehe, et al. Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity[J]. Electrochimica Acta, 2012, 75(4): 311-315.
|
31 |
WANG Junxiang, TU Jiguo, LEI Haiping, et al. The effect of graphitization degree of carbonaceous material on the electrochemical performance for aluminum-ion batteries[J]. RSC Advances, 2019, 9(67): 38990-38997.
|
32 |
任文才, 成会明. 柔性、高导电的石墨烯三维网络结构体材料[J]. 科学观察, 2014(6): 35-36.REN Wencai, CHENG Huiming. Flexible and highly conductive graphene 3D network structure materials[J]. Scientific Observation, 2014(6): 35-36.
|
33 |
DAS S K, MAHAPATRA S, LAHAN H, et al. Aluminium-ion batteries: Developments and challenges[J]. Journal of Materials Chemistry, 2017, 5(14): 6347-6367.
|
34 |
CHEN Hao, GUO Fan, LIU Yingjun, et al. A defect-free principle for advanced graphene cathode of aluminum-ion battery[J]. Advanced Materials, 2017, 29(12): 5958-5964.
|
35 |
CHEN Hao, XU Hanyan, WANG Siyao, et al. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life[J]. Science Advances, 2017, 3(12): 7233-7239.
|
36 |
YU Xinzhi, WANG Bin, GONG Decai, et al. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable aluminum-ion batteries[J]. Advanced Materials, 2017, 29(4): 1604118.
|
37 |
CHEN Hao, CHEN Chen, LIU Yingjun, et al. High-quality graphene microflower design for high-performance Li-S and Al-ion batteries[J]. Advanced Energy Materials, 2017, 7(17): 1700051.
|
38 |
LIN Li-Chiang, GROSSMAN J C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations[J]. Nature Communications, 2015, 6: 8335-8341.
|
39 |
BANDURIN D A, TOREE I, KUMAR R K, et al. Negative local resistance caused by viscous electron backflow in graphene[J]. Science, 2016, 351(627): 1055-1058.
|
40 |
GAO Bo, BOWER C, LORENTZEN J D, et al. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes[J]. Chemical Physics Letters, 2000, 327(2): 69-75.
|
41 |
ELISEEV A A, YASHINA L V, BRZHEZINSKAYA M M, et al. Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes[J]. Carbon, 2010, 48(10): 2708-2721.
|
42 |
BHAURIYAL P, MAHATA A, PATHAK B, et al. A computational study of a single-walled carbon-nanotube-based ultrafast high-capacity aluminum battery[J]. Chemistry - An Asian Journal, 2017, 12(15): 1944-1951.
|
43 |
JIAO Handong, WANG Junxiang, TU Jiguo, et al. Aluminum-ion asymmetric supercapacitor incorporating carbon nanotubes and an ionic liquid electrolyte: Al/AlCl3- [EMIm]Cl/CNTs[J]. Energy Technology, 2016, 4(9): 1112-1118.
|
44 |
ZHANG Erjin, WANG Jue, WANG Bin, et al. Unzipped carbon nanotubes for aluminum battery[J]. Energy Storage Materials, 2019, 23: 72-78.
|
45 |
HAN Mei, LÜ Zichuan, HOU Lixue, et al. Graphitic multi-walled carbon nanotube cathodes for rechargeable Al-ion batteries with well-defined discharge plateaus[J]. Journal of Power Sources, 2020, 451: 69-77.
|
46 |
LIU Zhaomeng, WANG Jue, DING Hongbo, et al. Carbon nanoscrolls for aluminum battery[J]. ACS Nano, 2018, 12(8): 8456-8466.
|