1 |
尹杰, 李谦, 冷海燕. TiFe系储氢合金性能改善研究进展[J]. 材料导报, 2016, 30(19): 141-147.
|
|
YIN J, LI Q, LENG H Y. Advances in improvement of hydrogen storage properties of TiFe-based alloys[J]. Materials Reports, 2016, 30(19): 141-147.
|
2 |
赵栋梁, 韩忠刚, 翟亭亭, 等. TiFe基合金储氢活化性能研究进展[J]. 稀有金属, 2020, 44(4): 337-351.
|
|
ZHAO D L, HAN Z G, ZHAI T T, et al. Advances in the activation property of hydrogen storage for TiFe-based alloy[J]. Chinese Journal of Rare Earth, 2020, 44(4): 337-351.
|
3 |
LV P, HUOT J. Hydrogen storage properties of Ti0.95FeZr0.05, TiFe0.95Zr0.05 and TiFeZr0.05 alloys[J]. International Journal of Hydrogen Energy, 2016, 41: 22128-22133.
|
4 |
CHEN Z W, XIAO X Z, CHEN L X, et al. Development of Ti-Cr-Mn-Fe based alloys with high hydrogen desorption pressures for hybrid hydrogen storage vessel application[J]. International Journal of Hydrogen Energy, 2013, 38: 12803-12810.
|
5 |
SCHLAPBACH L, RIESTERER T. The activation of FeTi for hydrogen absorption[J]. Applied Physics A: Solids and Surfaces, 1983, 32: 169-182.
|
6 |
EDALATI K, MATSUDA J, YANAGIDA A, et al. Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: Similarities and differences[J]. International Journal of Hydrogen Energy, 2014, 39: 15589-15594.
|
7 |
柴志刚, 赵敏寿. 高能球磨对TiFe合金电极放电性能的影响[J]. 吉林大学学报(理学版), 2002(4): 388-391.
|
|
CHAI Z G, ZHAO M S. The influence of ball-milling on discharge properties of TiFe alloy electrodes[J]. Journal of Jilin University (Science Edition), 2002, 4: 388-391.
|
8 |
JANKOWSKA E, JURCZYK M. Electrochemical properties of sealed Ni-MH batteries using nanocrystalline TiFe-type anodes[J]. Journal of Alloys and Compounds, 2004, 372: L9-L12.
|
9 |
ABRASHEV B, SPASSOV T, BLIZNAKOV S, et al. Microstructure and electrochemical hydriding/dehydriding properties of ball-milled TiFe-based alloys[J]. International Journal of Hydrogen Energy, 2010, 35: 6332-6337.
|
10 |
ZADOROZHNYY V Y, KLYAMKIN S N, ZADOROZHNYY M Y, et al. Hydrogen storage nanocrystalline TiFe intermetallic compound: Synthesis by mechanical alloying and compacting[J]. International Journal of Hydrogen Energy, 2012, 37: 17131-17136.
|
11 |
ZADOROZHNYY V Y, KLYAMKIN S N, ZADOROZHNYY M Y, et al. Mechanical alloying of nanocrystalline intermetallic compound TiFe doped by aluminum and chromium[J]. Journal of Alloys and Compounds, 2014, 586: S56-S60.
|
12 |
ZADOROZHNYY V Y, MILOVZOROV G S., KLYAMKIN S N, et al. Preparation and hydrogen storage properties of nanocrystalline TiFe synthesized by mechanical alloying[J]. Progress in Natural Science: Materials International, 2017, 27: 149-155.
|
13 |
高岩, 罗堪昌, 李柏林, 等. TiFe二元系在机械合金化过程中的结构转变及纳米晶TiFe储氢合金的制备[J]. 功能材料, 1998, 29(3): 256-259.
|
|
GAO Y, LUO K C, LI B L, et al. Structure variation and preparation of FeTi nanocrystalline intermetallic compound by mechanical alloying of Fe-Ti and Fe-Ti-Mn elemental powder[J]. Journal of Functional Materials, 1998, 29(3): 256-259.
|
14 |
ABRASHEV B, SPASSOV T, BLIZNAKOV S, et al. Microstructure and electrochemical hydriding/dehydriding properties of ball-milled TiFe-based alloys[J]. International Journal of Hydrogen Energy, 2010, 35: 6332-6337.
|
15 |
EMAMI H, EDALATI K, MATSUDA J, et al. Hydrogen storage performance of TiFe after processing by ball milling[J]. Acta Materialia, 2015, 88: 190-195.
|
16 |
ZEAITER A, CHAPELLE D, CUEVAS F, et al. Milling effect on the microstructural and hydrogenation properties of TiFe0.9Mn0.1 alloy[J]. Powder Technology, 2018, 339: 903-910.
|
17 |
SHANG H W, ZHANG Y H, LI Y Q, et al. Effect of adding over-stoichiometrical Ti and substituting Fe with Mn partly on structure and hydrogen storage performances of TiFe alloy[J]. Renewable Energy, 2019, 135: 1481-1498.
|
18 |
LV P, HUOT J. Hydrogenation improvement of TiFe by adding ZrMn2[J]. Energy, 2017, 138: 375-382.
|
19 |
SEILER A, STUCKI F, CHARPI P. How additives of Mn improve the hydrogenation characteristics of FeTi and the role of its subsurface[J]. Solid State Communications, 1982, 42(5): 337-341.
|
20 |
LI Y Q, SHANG H W, ZHANG Y H, et al. Investigation on gaseous hydrogen storage performances and reactivation ability of as-cast TiFe1-xNix (x=0, 0.1, 0.2 and 0.4) alloys [J]. International Journal of Hydrogen Energy, 2019, 44: 4240-4252.
|
21 |
JAIN P, GOSSELIN C, HUOT J. Effect of Zr, Ni, and Zr7Ni10 alloy on hydrogen storage charateristics of TiFe alloy[J]. International Journal of Hydrogen Energy, 2015, 40: 16921-16927.
|
22 |
LENG H Y, YU Z G, YIN J, et al. Effect of Ce an the hydrogen storage properties of TiFe0.9Mn0.1 alloy[J]. International Journal of Hydrogen Energy, 2017, 42: 23731-23736.
|