1 |
ARICÒ A S, BRUCE P, TARASCON J M, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(3): 366-376.
|
2 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2010, 414(4): 359-367.
|
3 |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29.
|
4 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(8): 928-935.
|
5 |
KWADE A, HASELRIEDER W, LEITHOFF R, et al. Current status and challenges for automotive battery production technologies[J]. Nature Energy, 2018, 3(4): 290-300.
|
6 |
彭佳悦, 祖晨曦, 李泓. 锂电池基础科学问题(I)——化学储能电池理论能量密度的估算[J]. 储能科学与技术, 2013, 2(1): 55-63.
|
|
PENG Jiayue, ZU Chenxi, LI Hong. Fundamental scientific aspects of lithium batteries (I): Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology, 2013, 2(1): 55-63.
|
7 |
ZU Chenxi, LI Hong. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8): 2614-2624.
|
8 |
BILLAUD J, BOUVILLE F, MAGRINI T, et al. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J]. Nature Energy, 2016, 1(8): 160971-160978.
|
9 |
罗飞, 褚赓, 黄杰, 等. 锂离子电池基础科学问题(Ⅷ)——负极材料[J]. 储能科学与技术, 2014, 3(2): 146-163.
|
|
LUO Fei, CHU Geng, HUANG Jie, et al. Fundamental scientific aspects of lithium batteries (Ⅷ): Anode electrode materials[J]. Energy Storage Science and Technology, 2014, 3(2): 146-163.
|
10 |
LUO Fei, LIU Bonan, ZHENG Jieyun, et al. Review—Nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2509-A2528.
|
11 |
CHAE Sujong, KO Minseong, KIM Kyungho, et al. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries[J]. Joule, 2017, 1(1): 47-60.
|
12 |
KO Minseong, CHAE Sujong, MA Jiyoung, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy, 2016, 1(9): 161131-161138.
|
13 |
KIM Namhyung, CHAE Sujong, MA Jiyoung, et al. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes[J]. Nature Communications, 2017, 8(1): 8121-8129.
|
14 |
CHEN Tao, WU Ji, ZHANG Qinglin, et al. Recent advancement of SiOx based anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 363(8): 126-144.
|
15 |
YOO Sunyoung, KIM Jeonghan, KANG Byoungwoo. Characterizing local structure of SiOx using confocal μ-Raman spectroscopy and its effects on electrochemical property[J]. Electrochimica Acta, 2016, 212(7): 68-75.
|
16 |
KEIL P, SCHUSTER S F, WILHELM J, et al. Calendar aging of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(9): A1872-A1880.
|
17 |
HUGGINS R A. Simple method to determine electronic conductivity in mixed: A review[J]. Ionics, 2002, 8(6): 300-313.
|
18 |
凌仕刚, 吴娇杨, 张舒, 等. 锂离子电池基础科学问题(ⅩⅢ)——电化学测量方法[J]. 储能科学与技术, 2015, 4(1): 83-103.
|
|
LING Shigang, WU Jiaoyang, ZHANG Shu, et al. Fundamental scientific aspects of lithium ion batteries (ⅩⅢ): Electrochemical measurement[J]. Energy Storage Science and Technology, 2015, 4(1): 83-103.
|
19 |
VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341.
|
20 |
SCHMITZ R W, MURMANN P, SCHMITZ R, et al. Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods[J]. Progress in Solid State Chemistry, 2014, 42(4): 65-84.
|
21 |
AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105(9): 52-76.
|
22 |
TIKEKAR M D, CHOUDHURY S, TU Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1(9): 161141-161148.
|
23 |
ZHENG J M, ENGELHARD M H, MEI D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2(3): 170121-170128.
|
24 |
JIAO Shuhong, REN Xiaodi, CAO Ruiguo, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746.
|