储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 941-951.doi: 10.12028/j.issn.2095-4239.2017.0087

• 特约文章 • 上一篇    下一篇

固态金属锂电池最新进展评述

段  惠1,2,殷雅侠1,2,郭玉国1,2,万立骏1,2   

  1. 1中国科学院化学研究所中国科学院分子科学科教融合卓越中心,分子纳米结构与技术院重点实验室,北京 100190;2中国科学院大学,北京 100049
  • 收稿日期:2017-06-01 修回日期:2017-07-07 出版日期:2017-09-01 发布日期:2017-09-01
  • 通讯作者: 郭玉国,研究员,E-mail:ygguo@iccas.ac.cn;万立骏,中国科学院院士,E-mail:wanlijun@iccas.ac.cn。
  • 基金资助:
    国家重点研发计划项目(2016YFA0202500),中国科学院战略性先导科技专项(XDA09010300)。

Research progress on solid-state lithium metal batteries

DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2   

  1. 1CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China; 2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-06-01 Revised:2017-07-07 Online:2017-09-01 Published:2017-09-01
  • About author:段惠(1989—),女,博士研究生,研究方向为锂电池固态电解质,E-mail:duanhui14@iccas.ac.cn

摘要: 金属锂以其高比容量和低电化学势被认为是理想的高能量密度负极材料。然而由于液态金属锂电池中金属锂不均匀沉积形成的锂枝晶易刺穿隔膜导致电池内部短路,存在严重的安全隐患,很大程度上限制了高能量密度金属锂电池的发展。用固态电解质取代液态电解液有望得到高能量密度、长循环寿命和高安全性的固态金属锂电池。如何提高固态电解质的本征特性,如离子电导率、机械强度、电化学窗口,更重要地,如何稳定固态电解质与电极的界面接触特性以及提高电极内部有效的锂离子和电子传输通道是固态电解质研发所面临的关键技术问题。多层结构的固态电解质将会结合不同类型电解质的优势,从而满足固态金属锂电池对固态电解质的诸多要求。

关键词: 固态金属锂电池, 固态电解质, 界面, 离子电导率, 多层结构电解质

Abstract: Li metal is a promising anode material due to the high capacity and the low negative electrochemical potential. The uncontrolled dendrite growth during lithium plating/stripping can induce internal short circuit and thermal runaway with potential safety hazards, which cannot meet the increasing demand for safe, high-energy lithium-ion batteries. Solid-state lithium-metal batteries (SLMBs) that use solid electrolytes (SEs) instead of liquid ones could offer high energy density, long cycle life and high safety. However, ionic conductivity, mechanical strength, electrochemical windows, electrode/electrolyte interface of SEs and favorable lithium ionic and electronic conduction pathways in electrode restrict the development of SLMBs. Multilayered electrolyte will combine the speciality of each electrolyte to acquire ideal solid-state lithium metal battery.

Key words: solid-state lithium metal battery, solid electrolyte, interface, ionic conductivity, multilayered electrolyte