储能科学与技术 ›› 2017, Vol. 6 ›› Issue (5): 941-951.doi: 10.12028/j.issn.2095-4239.2017.0087
段 惠1,2,殷雅侠1,2,郭玉国1,2,万立骏1,2
收稿日期:
2017-06-01
修回日期:
2017-07-07
出版日期:
2017-09-01
发布日期:
2017-09-01
通讯作者:
郭玉国,研究员,E-mail:ygguo@iccas.ac.cn;万立骏,中国科学院院士,E-mail:wanlijun@iccas.ac.cn。
基金资助:
DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2
Received:
2017-06-01
Revised:
2017-07-07
Online:
2017-09-01
Published:
2017-09-01
About author:
段惠(1989—),女,博士研究生,研究方向为锂电池固态电解质,E-mail:duanhui14@iccas.ac.cn
摘要: 金属锂以其高比容量和低电化学势被认为是理想的高能量密度负极材料。然而由于液态金属锂电池中金属锂不均匀沉积形成的锂枝晶易刺穿隔膜导致电池内部短路,存在严重的安全隐患,很大程度上限制了高能量密度金属锂电池的发展。用固态电解质取代液态电解液有望得到高能量密度、长循环寿命和高安全性的固态金属锂电池。如何提高固态电解质的本征特性,如离子电导率、机械强度、电化学窗口,更重要地,如何稳定固态电解质与电极的界面接触特性以及提高电极内部有效的锂离子和电子传输通道是固态电解质研发所面临的关键技术问题。多层结构的固态电解质将会结合不同类型电解质的优势,从而满足固态金属锂电池对固态电解质的诸多要求。
段 惠1,2,殷雅侠1,2,郭玉国1,2,万立骏1,2. 固态金属锂电池最新进展评述[J]. 储能科学与技术, 2017, 6(5): 941-951.
DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2. Research progress on solid-state lithium metal batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 941-951.
[1] JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1(9): 16141. [2] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/ nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600445. [3] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: doi: 10.1038 / natrevmats.2016.103. [4] ZHU Y, HE X, MO Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(9): 3253-3266. [5] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review[J]. Chemistry of Materials, 2003, 15(21): 3974-3990. [6] KHAN W, RESHAK A H. Specific features of Li5La3M2O12 (M=Nb, Ta) single crystals: Electrolyte for solid states batteries[J]. Science of Advanced Materials, 2014, 6(8): 1716-1726. [7] ZHAO Y, DAEMEN L L. Superionic conductivity in lithium-rich anti-perovskites[J]. Journal of the American Chemical Society, 2012, 134(36): 15042-15047. [8] HOOD Z D, WANG H, SAMUTHIRA PANDIAN A, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes[J]. Journal of the American Chemical Society, 2016, 138(6): 1768-1771. [9] LI Y, ZHOU W, XIN S, et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(34): 9965-9968. [10] MA C, CHEN K, LIANG C, et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes[J]. Energy & Environmental Science, 2014, 7(5): 1638- 1642. [11] MA C, CHENG Y, CHEN K, et al. Mesoscopic framework enables facile ionic transport in solid electrolytes for Li batteries[J]. Advanced Energy Materials, 2016, 6(11): doi: 10.1002/aenm. 201600053. [12] LUNTZ A C, VOSS J, REUTER K. Interfacial challenges in solid-state Li ion batteries[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4599-4604. [13] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. [14] SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631. [15] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): doi:10.1038/nenergy.2016.30. [16] WAN H, PENG G, YAO X, et al. Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode[J]. Energy Storage Materials, 2016, 4: 59-65. [17] YAO X, LIU D, WANG C, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Letters, 2016, 16(11): 7148-7154. [18] YAO X, HUANG N, HAN F, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017, doi: 10.1002/aenm.201602923. [19] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781. [20] BUSCHMANN H, BERENDTS S, MOGWITZ B, et al. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure[J]. Journal of Power Sources, 2012, 206: 236-244. [21] LI Y, CAO Y, GUO X. Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75 Ta0.25O12 solid electrolytes[J]. Solid State Ionics, 2013, 253: 76-80. [22] BERNUY-LOPEZ C, MANALASTAS W, LOPEZ DEL AMO J M, et al. Atmosphere controlled processing of ga-substituted garnets for high Li-ion conductivity ceramics[J]. Chemistry of Materials, 2014, 26(12): 3610-3617. [23] ZHU Y, HE X, MO Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. [24] CHENG L, CRUMLIN E J, CHEN W, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(34): 18294-18300. [25] LI Y, HAN J T, VOGEL S C, et al. The reaction of Li6.5La3Zr1.5Ta0.5O12 with water[J]. Solid State Ionics, 2015, 269: 57-61. [26] LI Y, XU B, XU H, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2017, 129(3): 771-774. [27] LUO W, GONG Y, ZHU Y, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262. [28] TSAI C L, RODDATIS V, CHANDRAN C V, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10617-10626. [29] CHEN R J, ZHANG Y B, LIU T, et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9654-9661. [30] LIANG Z, LIN D, ZHAO J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proceedings of the National Academy of Sciences, 2016, 113(11): 2862-2867. [31] HAN X, GONG Y, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2016, 16(5): 572-579. [32] WANG C, GONG Y, LIU B, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2016, 17(1): 565-571. [33] FU K, GONG Y, LIU B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): doi: 10.1126/sciadv.1601659. [34] LUO W, GONG Y, ZHU Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, doi: 10.1002/ adma.201606042. [35] VAN DEN BROEK J, AFYON S, RUPP J L M. Interface-engineered all-solid-state li-ion batteries based on garnet-type fast Li+ conductors[J]. Advanced Energy Materials, 2016, 6(19): doi: 10.1002/aenm.201600736. [36] KIM D H, OH D Y, PARK K H, et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion- battery electrodes for all-solid-state Li-ion batteries[J]. Nano Letters, 2017, 17(5): 3013-3020. [37] PARK K, YU B C, JUNG J W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12[J]. Chemistry of Materials, 2016, 28(21): 8051-8059. [38] KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. Journal of Power Sources, 2014, 260: 292-298. [39] BEST A S, FORSYTH M, MACFARLANE D R. Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2−x(PO4)3: Impedance, X-ray and NMR studies[J]. Solid State Ionics, 2000, 136/137: 339-344. [40] XU X, WEN Z, YANG X, et al. High lithium ion conductivity glass-ceramics in Li2O-Al2O3-TiO2-P2O5 from nanoscaled glassy powders by mechanical milling[J]. Solid State Ionics, 2006, 177(26/27/28/29/30/31/32): 2611-2615. [41] MARIAPPAN C R, GELLERT M, YADA C, et al. Grain boundary resistance of fast lithium ion conductors: Comparison between a lithium-ion conductive Li-Al-Ti-P-O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic[J]. Electrochemistry Communications, 2012, 14(1): 25-28. [42] BEST A S, NEWMAN P J, MACFARLANE D R, et al. Characterisation and impedance spectroscopy of substituted Li1.3Al0.3Ti1.7(PO4)3−x(ZO4)x (Z=V, Nb) ceramics[J]. Solid State Ionics, 1999, 126(1/2): 191-196. [43] DING F, XU W, SHAO Y, et al. H+ diffusion and electrochemical stability of Li1+x+yAlxTi2−xSiyP3−yO12 glass in aqueous Li/air battery electrolytes[J]. Journal of Power Sources, 2012, 214: 292-297. [44] HASEGAWA S, IMANISHI N, ZHANG T, et al. Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water[J]. Journal of Power Sources, 2009, 189(1): 371-377. [45] WANG Q, WEN Z, JIN J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries[J]. Chemical Communications, 2016, 52(8): 1637-1640. [46] ZHOU W, WANG S, LI Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388. [47] BUCUR C B, LITA A, OSADA N, et al. A soft, multilayered lithium-electrolyte interface[J]. Energy & Environmental Science, 2016, 9(1): 112-116. [48] KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402. [49] BATES C M, CHANG A B, MOMČILOVIĆ N, et al. ABA triblock brush polymers: Synthesis, self-assembly, conductivity, and rheological properties[J]. Macromolecules, 2015, 48(14): 4967-4973. [50] ZHANG J, ZHAO J, YUE L, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5(24): doi: 10.1002/aenm.201501082. [51] ZHOU D, HE Y B, LIU R, et al. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2015, 5(15): doi:10.1002/aenm.201500353. [52] ZENG X X, YIN Y X, LI N W, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid li metal batteries[J]. Journal of the American Chemical Society, 2016, 138(49): 15825-15828. [53] LU Q, HE Y B, YU Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Materials, 2017, doi:10.1002/adma.201604460. [54] CHAI J, LIU Z, MA J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2016, 4(2): doi: 10.1002/advs.201600377. [55] ZHANG H, LI C, PISZCZ M, et al. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives[J]. Chemical Society Reviews, 2017, 46(3): 797-815. [56] MA Q, ZHANG H, ZHOU C, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie-International Edition, 2016, 55(7): 2521-2525. [57] KUMAR B, FELLNER J P. Polymer-ceramic composite protonic conductors[J]. Journal of Power Sources, 2003, 123(2): 132-136. [58] ZHU Z, HONG M, GUO D, et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode[J]. Journal of the American Chemical Society, 2014, 136(47): 16461-16464. [59] LIU W, LIN D, SUN J, et al. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires[J]. ACS Nano, 2016, 10(12): 11407-11413. [60] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459-465. [61] ZHENG J, TANG M, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie International Edition, 2016, 55(40): 12538- 12542. [62] TAO X, LIU Y, LIU W, et al. Solid-state lithium-sulfur batteries operated at 37 ℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer[J]. Nano Letters, 2017, doi: 10.1021/acs.nanolett.7b00221. [63] NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Letters, 2015, 15(5): 3317-3323. [64] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. [65] LIU W, LEE S W, LIN D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2: doi: 10.1038/nenergy.2017.35. [66] FU K, GONG Y, DAI J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7094-7099. [67] ZHAI H, XU P, NING M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, doi: 10.1021/acs.nanolett.7b00715. [68] CHOUDHURY S, MANGAL R, AGRAWAL A, et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nature Communication, 2015, 6: doi: 10.1038/ncomms10101. [69] PAN Q, SMITH D M, QI H, et al. Hybrid electrolytes with controlled network structures for lithium metal batteries[J]. Advanced Materials, 2015, 27(39): 5995-6001. |
[1] | 王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946. |
[2] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[3] | 魏超超, 余创, 吴仲楷, 彭林峰, 程时杰, 谢佳. Li3PS4 固态电解质的研究进展[J]. 储能科学与技术, 2022, 11(5): 1368-1382. |
[4] | 王星星, 宋子钰, 吴浩, 冯文芳, 周志彬, 张恒. 固态聚合物电解质导电锂盐的研究进展[J]. 储能科学与技术, 2022, 11(4): 1226-1235. |
[5] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[6] | 赵志伟, 杨智, 彭章泉. 飞行时间二次离子质谱在锂基二次电池中的应用[J]. 储能科学与技术, 2022, 11(3): 781-794. |
[7] | 邓诗维, 吴剑芳, 时拓. 固体电解质缺陷化学分析:晶粒体点缺陷及晶界空间电荷层[J]. 储能科学与技术, 2022, 11(3): 939-947. |
[8] | 杜昭, 阳康, 舒高, 韦攀, 杨肖虎. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. |
[9] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[10] | 闫汶琳, 吴凡, 李泓, 陈立泉. 含硅负极在硫化物全固态电池中的应用[J]. 储能科学与技术, 2021, 10(3): 821-835. |
[11] | 池上森, 姜益栋, 王庆荣, 叶子威, 余凯, 马骏, 靳俊, 王军, 王朝阳, 温兆银, 邓永红. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(3): 914-924. |
[12] | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
[13] | 朱鑫鑫, 蒋伟, 万正威, 赵澍, 李泽珩, 王利光, 倪文斌, 凌敏, 梁成都. 固态锂硫电池电解质及其界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 848-862. |
[14] | 张鹏, 赖兴强, 沈俊荣, 张东海, 阎永恒, 张锐, 盛军, 代康伟. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
[15] | 张晶晶, 崔孝玲, 赵冬妮, 杨莉, 王洁. 高浓度电解液对电极/电解液界面的影响[J]. 储能科学与技术, 2021, 10(1): 143-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||