储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2117-2126.doi: 10.19799/j.cnki.2095-4239.2021.0178
许卓1,2,3(), 郑莉莉1,2,3, 陈兵1,2,3, 张涛1,2,3, 常修亮1,2,3, 韦守李1,2,3, 戴作强1,2,3()
收稿日期:
2021-04-22
修回日期:
2021-06-05
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
许卓(1998—),女,硕士研究生,主要研究方向为新能源电动汽车,E-mail:基金资助:
Zhuo XU1,2,3(), Lili ZHENG1,2,3, Bing CHEN1,2,3, Tao ZHANG1,2,3, Xiuling CHANG1,2,3, Shouli WEI1,2,3, Zuoqiang DAI1,2,3()
Received:
2021-04-22
Revised:
2021-06-05
Online:
2021-11-05
Published:
2021-11-03
摘要:
目前单一的无机固态电解质、聚合物固态电解质分别存在着离子电导率低、产生枝晶、界面不稳定等各种问题,无法满足全固态锂金属电池的性能要求。有机聚合物电解质和无机电解质复合形成的复合固态电解质能够不同程度地增强电导率、抑制枝晶产生、提高机械强度、提高界面稳定性以及兼容性等,得到了广泛关注与研究。本文综述了复合固态电解质在提高锂离子电导率、抑制锂枝晶、提高电化学稳定性三个重要方面的改进方向、措施,并展望复合固态电池的发展方向,为复合固态电池的发展和应用提供借鉴。
中图分类号:
许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126.
Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126.
1 | ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600445. |
2 | 汪勋. PEO基复合固态电解质的制备及表征[D]. 西安: 西安工业大学, 2019. |
WANG X. Preparation and characterization of PEO-based solid composite electrolyte[D]. Xi'an: Xi'an Technological University, 2019. | |
3 | CHENG Z W, LIU T, ZHAO B, et al. Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, 34: 388-416. |
4 | 金英敏, 李栋, 贾政刚, 等. 用于全固态锂电池的有机-无机复合电解质[J]. 原子与分子物理学报, 2020, 37(6): 958-973. |
JIN Y M, LI D, JIA Z G, et al. Organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Journal of Atomic and Molecular Physics, 2020, 37(6): 958-973. | |
5 | 阳敦杰. LLZO/PEO复合固体电解质的制备及其与金属锂负极的界面特性研究[D]. 武汉: 武汉理工大学, 2018. |
YANG D J. Preparation LLZO/PEO composite solid electrolyte and the characteristics of interface with lithium metal[D]. Wuhan: Wuhan University of Technology, 2018. | |
6 | 黄祯, 杨菁, 陈晓添, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4(1): 1-18. |
HUANG Z, YANG J, CHEN X T, et al. Research progress of inorganic solid electrolytes in foundmental and application field[J]. Energy Storage Science and Technology, 2015, 4(1): 1-18. | |
7 | LI Y T, HAN J T, WANG C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22(30): 15357. |
8 | ZEIER W G. Structural limitations for optimizing garnet-type solid electrolytes: A perspective[J]. Dalton Transactions, 2014, 43(43): 16133-16138. |
9 | 许阳阳, 李全国, 梁成都, 等. 硫化物固体电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 649-658. |
XU Y Y, LI Q G, LIANG C D, et al. Research progress of solid electrolytes[J]. Energy Storage Science and Technology, 2016, 5(5): 649-658. | |
10 | 闫雅婧. 锂离子电池用固态电解质的研究现状与展望[J]. 无机盐工业, 2020, 52(7): 22-25. |
YAN Y J. Research status and prospect of solid electrolyte for lithium ion batteries[J]. Inorganic Chemicals Industry, 2020, 52(7): 22-25. | |
11 | 陈立坤, 胡懿, 马家宾, 等. Li+电池固态聚合物电解质研究进展[J]. 化学工业与工程, 2020, 37(1): 2-16. |
CHEN L K, HU Y, MA J B, et al. Research progress of solid polymer electrolytes for lithium-ion batteries[J]. Chemical Industry and Engineering, 2020, 37(1): 2-16. | |
12 | 彭翔, 黄楷, 孙志杰, 等. 聚合物复合固体电解质材料研究进展[J]. 中国材料进展, 2020, 39(3): 191-199, 190. |
PENG X, HUANG K, SUN Z J, et al. Progress on the composite solid polymer electrolytes[J]. Materials China, 2020, 39(3): 191-199, 190. | |
13 | DIRICAN M, YAN C Y, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Materials Science and Engineering, 2019, 136: 27-46. |
14 | 杜奥冰, 柴敬超, 张建军, 等. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 627-648. |
DU A B, CHAI J C, ZHANG J J, et al. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648. | |
15 | MAUGER A, ARMAND M, JULIEN C M, et al. Challenges and issues facing lithium metal for solid-state rechargeable batteries[J]. Journal of Power Sources, 2017, 353: 333-342. |
16 | ZHU X Q, WANG K, XU Y N, et al. Strategies to boost ionic conductivity and interface compatibility of inorganic-organic solid composite electrolytes[J]. Energy Storage Materials, 2021, 36: 291-308. |
17 | LU W Z, XUE M Z, ZHANG C M. Modified Li7La3Zr2O12 (LLZO) and LLZO-polymer composites for solid-state lithium batteries[J]. Energy Storage Materials, 2021, 39: 108-129. |
18 | ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120. |
19 | CHEN S J, WANG J Y, ZHANG Z H, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources, 2018, 387: 72-80. |
20 | 宋宁. 固态电池Li7La3Zr2O12/PEO复合电解质膜的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
SONG N. Preparation and properties of Li7La3Zr2O12/PEO composite electrolyte membrane for solid-state batteries[D]. Harbin: Harbin Institute of Technology, 2019. | |
21 | ZAMAN W, HORTANCE N, DIXIT M B, et al. Visualizing percolation and ion transport in hybrid solid electrolytes for Li-metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(41): 23914-23921. |
22 | 胡志雄. 掺杂锂镧钛氧固态电解质的制备及其性能研究[D]. 深圳: 深圳大学, 2019. |
HU ZhiXiong. Preparation and properties of doped lithium lanthanum titanium oxide solid electrolyte[D]. Shenzhen: Shenzhen University, 2019. | |
23 | 朱朋辉. 基于PEO基固态聚合物复合电解质的制备及其在锂离子电池中的应用[D]. 镇江: 江苏大学, 2019. |
ZHU P H. Preparation of solid polymer composite electrolyte based on PEO and its application in lithium-ion battery[D]. Zhenjiang, China: Jiangsu University, 2019. | |
24 | ZHANG J X, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454. |
25 | LI J, CHEN H W, SHEN Y B, et al. Covalent interfacial coupling for hybrid solid-state Li ion conductor[J]. Energy Storage Materials, 2019, 23: 277-283. |
26 | 徐先华. PEO基复合固态聚合物电解质的制备、结构表征及导电增强机制[D]. 长沙: 中南大学, 2005. |
XU X H. Preparation, structure characterization and conductive enhancement mechanism of PEO based composite solid polymer electrolyte[D]. Changsha: Central South University, 2005. | |
27 | WANG W M, YI E, FICI A J, et al. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles[J]. The Journal of Physical Chemistry C, 2017, 121(5): 2563-2573. |
28 | 虞鑫润, 马君, 牟春博, 等. 高锂离子电导的有机-无机复合电解质的渗流结构设计[J/OL]. 物理化学学报, 2022, 38(3): doi: 10.3866/PKU.WHXB201912061. |
YU X R, MA J, MU C B, et al. Percolation structure design of organic inorganic composite electrolyte with high lithium ion conductivity[J/OL]. Acta Physico-Chimica Sinica, 2022, 38(3): doi: 10.3866/PKU.WHXB201912061. | |
29 | LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. |
30 | YANG T, ZHENG J, CHENG Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21773-21780. |
31 | 王晗, 安汉文, 单红梅, 等. 全固态电池界面的研究进展[J]. 物理化学学报, 2021, 37(11): doi: 10.3866/PKU.WHXB202007070. |
WANG H, AN H W, SHAN H M, et al.Research progress of all solid state battery interface[J]. Acta Physico-Chimica Sinica, 2021, 37(11): doi: 10.3866/PKU.WHXB202007070. | |
32 | ZHOU W, WANG S, LI Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388. |
33 | XU L H, LI G B, GUAN J X, et al. Garnet-doped composite polymer electrolyte with high ionic conductivity for dendrite-free lithium batteries[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100767. |
34 | LI H Y, LIU W, YANG X D, et al. Fluoroethylene carbonate-Li-ion enabling composite solid-state electrolyte and lithium metal interface self-healing for dendrite-free lithium deposition[J]. Chemical Engineering Journal, 2021, 408: doi: 10.1016/j.cej.2020.127254. |
35 | ZHAO C Z, ZHANG X Q, CHENG X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(42): 11069-11074. |
36 | BI Z J, MU S, ZHAO N, et al. Cathode supported solid lithium batteries enabling high energy density and stable cyclability[J]. Energy Storage Materials, 2021, 35: 512-519. |
37 | FU K K, GONG Y H, LIU B Y, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): doi: 10.1126/sciadv.1601659. |
38 | JIANG T L, HE P G, WANG G X, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries[J]. Advanced Energy Materials,2020, 10(12): 1903376.1-1903376.10. |
39 | YAN C Y, ZHU P, JIA H, et al. Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries[J]. Energy Storage Materials, 2020, 26: 448-456. |
40 | LI D, CHEN L, WANG T S, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7069-7078. |
41 | HOU T Z, YANG G, RAJPUT N N, et al. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation[J]. Nano Energy, 2019, 64: doi: 10.1016/j.nanoen.2019.103881. |
42 | CHEN L, LI W X, FAN L Z, et al. Solid-state lithium batteries: Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries[J]. Advanced Functional Materials, 2019, 29(28): doi: 10.1002/adfm.201970196. |
43 | WANG Z W, ZHANG P Y, JIA Y Y, et al. Dimethyl carbonate adsorption enabling enhanced overall electrochemical properties for solid composite electrolyte[J]. Journal of Alloys and Compounds, 2021, 853: doi: 10.1016/j.jallcom.2020.157340. |
[1] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[2] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[3] | 苏月, 刘旭华, 曾芳磊, 任玉荣, 林本才. 聚偏氟乙烯/聚偏氟乙烯磺酸锂/锂盐复合固态电解质的制备及其性能[J]. 储能科学与技术, 2021, 10(6): 2069-2076. |
[4] | 吴勰, 周莉, 薛照明. 基于螯合B类锂盐的固态聚合物电解质的合成及其性能[J]. 储能科学与技术, 2021, 10(1): 96-103. |
[5] | 孙歌, 魏芷宣, 张馨元, 陈楠, 陈岗, 杜菲. 钠离子无机固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1251-1265. |
[6] | 吴洁, 江小标, 杨旸, 吴勇民, 朱蕾, 汤卫平. NASICON结构Li1+xAlxTi2-x(PO4)3(0≤x≤0.5)固体电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1472-1488. |
[7] | 杨菁, 刘高瞻, 沈麟, 姚霞银. NASICON结构钠离子固体电解质及固态钠电池应用研究进展[J]. 储能科学与技术, 2020, 9(5): 1284-1299. |
[8] | 彭林峰, 贾欢欢, 丁庆, 赵宇明, 谢佳, 程时杰. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
[9] | 贾曼曼, 张隆. 钠离子硫化物固态电解质研究进展[J]. 储能科学与技术, 2020, 9(5): 1266-1283. |
[10] | 屈晨滢, 侯朝霞, 王晓慧, 王健, 王凯, 李思瑶. 凝胶聚合物电解质在固态超级电容器中的研究进展[J]. 储能科学与技术, 2020, 9(3): 776-783. |
[11] | 姜鹏峰, 石元盛, 李康万, 韩百川, 颜立全, 孙洋, 卢侠. 固态电解质锂镧锆氧(LLZO)的研究进展[J]. 储能科学与技术, 2020, 9(2): 523-537. |
[12] | 杨建锋, 李林艳, 吴振岳, 王开学. 无机固态锂离子电池电解质的研究进展[J]. 储能科学与技术, 2019, 8(5): 829-837. |
[13] | 段 惠1,2,殷雅侠1,2,郭玉国1,2,万立骏1,2. 固态金属锂电池最新进展评述[J]. 储能科学与技术, 2017, 6(5): 941-951. |
[14] | 刘丽露1,戚兴国1,邵元骏1,潘 都1,2,白 莹2,胡勇胜1,李 泓1,陈立泉1. 钠离子固体电解质材料研究进展[J]. 储能科学与技术, 2017, 6(5): 961-980. |
[15] | 石 凯,安德成,贺艳兵,李宝华,康飞宇. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6(3): 479-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||